Chapter 1

PRINCIPLES OF PHOTOGRAMMETRIC MAPPING

Overview

- Photogrammetry: Definition and applications
- Photogrammetric tools:
- Rotation matrices
- Photogrammetric orientation: interior and exterior orientation
- Photogrammetric point positioning
- Collinearity equations/conditions (single camera systems)
- GNSS/INS-assisted photogrammetric systems
- Multi-camera photogrammetric systems
- Photogrammetric bundle adjustment
- Structure of the design and normal matrices

Photogrammetry

- Objective: Derive the positions and shapes of objects from imagery

Photogrammetry

- Classical Definitions:
- The art and science of determining the position and shape of objects from photography
- The process of reconstructing objects without touching them
- Non-contact positioning method
- Contemporary Definition:
- The art and science of tool development for automatic generation of spatial and descriptive information from multisensory data and/or systems

Data Acquisition Systems

Traditional Mapping Cameras
Large Format Imaging Systems

Medium and Small Format Digital Imaging Systems

Data Acquisition Systems

Traditional mapping cameras

\uparrow accurate lab calibration
\uparrow large image format
\uparrow low distortion lens system
\uparrow stable IOP
\uparrow extremely-high geometric image quality
\downarrow high initial procurement cost
\downarrow not easy to integrate with other systems on the same platform (e.g., LiDAR)

Medium-format digital cameras

\uparrow low-cost/off-the-shelf
\uparrow easy to integrate with other systems on the same platform (e.g., LiDAR)
\uparrow convenient for small area coverage \& UAV systems
\downarrow should be calibrated by the end user
\downarrow inferior geometric quality and lens system
\downarrow stability of IOP is not guaranteed
\downarrow limited array size

Data Acquisition Systems

Terrestrial (Close Range) Imagery

Terrestrial (Close Range) Imagery

Terrestrial (Close Range) Imagery

Input Stereo-Imagery

Terrestrial (Close Range) Imagery

Output Three-Dimensional Model

Terrestrial (Close Range) Imagery

- Experiments | Test | Descriptions |
| :---: | :--- |
| 1 | Subject 1: Time 1 \& Time 2 |
| 2 | Subject 1: No Smile \& Smile |
| 3 | Subject 2 \& Subject 3 |
- Results: Test 1

Green: Reference Blue: Matches
Red: Non-matches

Terrestrial (Close Range) Imagery

- Experiments | Test | Descriptions |
| :---: | :--- |
| 1 | Subject 1: Time 1 \& Time 2 |
| 2 | Subject 1: No Smile \& Smile |
| 3 | Subject 2 \& Subject 3 |
- Results: Test 2

Green: Reference Blue: Matches
Red: Non-matches

Terrestrial (Close Range) Imagery

- Experiments | Test | Descriptions |
| :---: | :--- |
| 1 | Subject 1: Time 1 \& Time 2 |
| 2 | Subject 1: No Smile \& Smile |
| 3 | Subject 2 \& Subject 3 |
- Results: Test 3

Green: Reference Blue: Matches
Red: Non-matches

Terrestrial (Close Range) Imagery

Terrestrial (Close Range) Imagery

- Scoliosis
- 3D deformity of the human spine
- Affects 2-3\% of the population
- Impacts the quality of life
- Early detection is vital

www.rad.washington.edu/mskbook/scoliosis.html
Signs of scoliosis

Uneven shoulders

Curve in spine

Uneven hips
*ADAM.

Terrestrial (Close Range) Imagery

- Scoliosis Detection \& Monitoring
$>$ Traditional method:
- Full-length spinal x-ray in a standing position
> Consequences:
- Frequent exposure to radiation (4-5 times a year, for 3-5 years)
- Increased risk of cancer

http://www.e-radiography.net/radpath/c/cobb-angle.jpg

Terrestrial (Close Range) Imagery

Cameras, projectors, frame, target board, computer(s), remote control

Terrestrial (Close Range) Imagery

Four point clouds in four different reference frames \rightarrow necessity for a registration to a common reference frame

Terrestrial (Close Range) Imagery

- Multiple surface registration: complete 3D torso model

Terrestrial (Close Range) Imagery

Terrestrial (Close Range) Imagery

Terrestrial (Close Range) Imagery

Laser-Based Torso Reconstruction

Terrestrial (Close Range) Imagery

$>$ Objective:

- Develop a system that can evaluate the deflection along the beam under static and dynamic loading conditions
$>$ Design target function:
- Low cost
- Non-contact
- Accurate
- Reusable
- Continuous evaluation of the deflection along the beam

Terrestrial (Close Range) Imagery

First epoch

Terrestrial (Close Range) Imagery

Terrestrial (Close Range) Imagery

Mobile Mapping Systems (MMS)

Terrestrial (Close Range) Imagery

Mobile Mapping Systems (MMS)

- Rack
up to 4 cameras with
4 possible combinations
- GPS Receiver
- Inertial Navigation System

The Ohio State University

Terrestrial (Close Range) Imagery

Mobile Mapping Systems (MMS)

Terrestrial Mobile Mapping Systems

Platform: Truck

Test Area: Stadium

Collected point cloud
Purdue University
(Colored by height)

Terrestrial Mobile Mapping Systems

Purdue University

Terrestrial Mobile Mapping Systems

Purdue University

Terrestrial Mobile Mapping Systems

Purdue University

Terrestrial Mobile Mapping Systems

Phenomobile: RGB, Hyperspectral, and LiDAR

Purdue Univesrity

Terrestrial (Close Range) Imagery

Mobile Mapping Systems (MMS)

Terrestrial (Close Range) Imagery

Mobile Mapping Systems (MMS)

Aerial Imagery

Aerial Imagery

Satellite Imagery

Satellite Imagery

IKONOS

Digital Globe - WorldView 3 (30cm GSD)

Notations

- r_{a}^{b} Stands for the coordinates of point \boldsymbol{a} relative to point \boldsymbol{b} - this vector is defined relative to the coordinate system associated with point \boldsymbol{b}.
- R_{a}^{b} Stands for the rotation matrix that transforms a vector defined relative to the coordinate system denoted by \boldsymbol{a} into a vector defined relative to the coordinate system denoted by \boldsymbol{b}.

Notations

Notations

Photography

Photogrammetry

- The interior orientation parameters of the involved cameras have to be known.
- The position and the orientation of the camera stations have to be known.

Camera Calibration

- Alternative procedures for camera calibration are well established.
- Laboratory camera calibration (Multi-collimators)
- Indoor camera calibration
- In-situ camera calibration

Analytical camera calibration

Camera Calibration

Camera Calibration

Georeferencing

- Exterior Orientation Parameters (EOPs) define the position, $r_{c}^{m}(t)$, and orientation $R_{c}^{m}(t)$, of the camera coordinate system relative to the mapping reference frame at the moment of exposure.

EOPs can be either:

- Indirectly estimated using Ground Control Points (GCPs), or
- Directly derived using GNSS/INS units onboard the imaging platform.

Photogrammetry

Overlap

Photogrammetry

Photogrammetry

Photogrammetry: Necessary Tools

- Rotation matrices:
- Express the mathematical relationship between two coordinate systems
- In a three-dimensional space, a rotation matrix involves at most three independent rotation angles.
- Photogrammetric orientation:
- Internal characteristics: Interior Orientation Parameters (IOPs)
- External characteristics: Exterior Orientation Parameters (EOPs)
- Collinearity conditions:
- The general mathematical model relating the image and ground coordinates of corresponding points

Rotation Matrix

- A rotation matrix transforms a vector from one coordinate system to another.

$$
\begin{aligned}
& r_{a}^{m}=R_{c}^{m} r_{a}^{c} \\
& R_{c}^{m}=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
\end{aligned}
$$

Rotation Matrix

- Let's consider the transformation of a unit vector along the x -axis of the camera coordinate system

$$
\begin{aligned}
& r_{a}^{m}=R_{c}^{m} r_{a}^{c} \\
& {\left[\begin{array}{l}
r_{11} \\
r_{21} \\
r_{31}
\end{array}\right]=R_{c}^{m}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

- The first column of the rotation matrix represents the components of a unit vector along the x -axis of the camera coordinate system w.r.t. the mapping reference frame.
- The norm of the first column is unity.
$r_{11}^{2}+r_{21}^{2}+r_{31}^{2}=1$
1

Rotation Matrix

- Let's consider the transformation of a unit vector along the y-axis of the camera coordinate system

$$
\begin{aligned}
& r_{a}^{m}=R_{c}^{m} r_{a}^{c} \\
& {\left[\begin{array}{l}
r_{12} \\
r_{22} \\
r_{32}
\end{array}\right]=R_{c}^{m}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]}
\end{aligned}
$$

- The second column of the rotation matrix represents the components of a unit vector along the y-axis of the camera coordinate system w.r.t. the mapping reference frame.
- The norm of the second column is unity.
$r_{12}^{2}+r_{22}^{2}+r_{32}^{2}=1$
2

Rotation Matrix

- Let's consider the transformation of a unit vector along the z -axis of the camera coordinate system

$$
\begin{aligned}
& r_{a}^{m}=R_{c}^{m} r_{a}^{c} \\
& {\left[\begin{array}{l}
r_{13} \\
r_{23} \\
r_{33}
\end{array}\right]=R_{c}^{m}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]}
\end{aligned}
$$

- The third column of the rotation matrix represents the components of a unit vector along the z -axis of the camera coordinate system w.r.t. the mapping reference frame.
- The norm of the third column is unity.
$r_{13}^{2}+r_{23}^{2}+r_{33}^{2}=1$
3

Rotation Matrix

- Since the x and y axes of the camera coordinate system are orthogonal to each other, then

$$
\left[\begin{array}{l}
r_{11} \\
r_{21} \\
r_{31}
\end{array}\right] \cdot\left[\begin{array}{l}
r_{12} \\
r_{22} \\
r_{32}
\end{array}\right]=0
$$

$$
r_{11} r_{12}+r_{21} r_{22}+r_{31} r_{32}=0
$$

- Since the x and z axes of the camera coordinate system are orthogonal to each other, then

$$
\left[\begin{array}{l}
r_{11} \\
r_{21} \\
r_{31}
\end{array}\right] \cdot\left[\begin{array}{l}
r_{13} \\
r_{23} \\
r_{33}
\end{array}\right]=0 \quad r_{11} r_{13}+r_{21} r_{23}+r_{31} r_{33}=0 \quad 5
$$

Rotation Matrix

- Since the y and z axes of the camera coordinate system are orthogonal to each other, then

$$
\left[\begin{array}{l}
r_{12} \\
r_{22} \\
r_{32}
\end{array}\right] \cdot\left[\begin{array}{l}
r_{13} \\
r_{23} \\
r_{33}
\end{array}\right]=0
$$

$$
r_{12} r_{13}+r_{22} r_{23}+r_{32} r_{33}=0
$$

- Since the nine elements of a rotation matrix must satisfy six constraints (orthogonality constraints), a 3 D rotation matrix is defined by a maximum of three independent parameters/rotation angles.
- In photogrammetry, the rotation matrix is defined by the angles $(\omega, \phi$, and $\kappa)$.

Primary Rotation (ω)

Primary Rotation (ω)

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{\omega} \\
y_{\omega} \\
z_{\omega}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \omega & \sin \omega \\
0 & -\sin \omega & \cos \omega
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{\omega} \\
y_{\omega} \\
z_{\omega}
\end{array}\right]=M_{\omega}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]} \\
& \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \omega & -\sin \omega \\
0 & \sin \omega & \cos \omega
\end{array}\right]\left[\begin{array}{l}
x_{\omega} \\
y_{\omega} \\
z_{\omega}
\end{array}\right]} \\
& \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=R_{\omega}\left[\begin{array}{l}
x_{\omega} \\
y_{\omega} \\
z_{\omega}
\end{array}\right]}
\end{aligned}
$$

Secondary Rotation (ϕ)

Secondary Rotation (ϕ)

$$
\left[\begin{array}{c}
x_{\omega \phi} \\
y_{\omega \phi} \\
z_{\omega \phi}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & 0 & -\sin \phi \\
0 & 1 & 0 \\
\sin \phi & 0 & \cos \phi
\end{array}\right]\left[\begin{array}{l}
x_{\omega} \\
y_{\omega} \\
z_{\omega}
\end{array}\right]
$$

$$
\left[\begin{array}{c}
x_{\omega \phi} \\
y_{\omega \phi} \\
z_{\omega \phi}
\end{array}\right]=M_{\phi}\left[\begin{array}{c}
x_{\omega} \\
y_{\omega} \\
z_{\omega}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x_{\omega} \\
y_{\omega} \\
z_{\omega}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & 0 & \sin \phi \\
0 & 1 & 0 \\
-\sin \phi & 0 & \cos \phi
\end{array}\right]\left[\begin{array}{l}
x_{\omega \phi} \\
y_{\omega \phi} \\
z_{\omega \phi}
\end{array}\right]
$$

$$
\left[\begin{array}{c}
x_{\omega} \\
y_{\omega} \\
z_{\omega}
\end{array}\right]=R_{\phi}\left[\begin{array}{c}
x_{\omega \phi} \\
y_{\omega \phi} \\
z_{\omega \phi}
\end{array}\right]
$$

Tertiary Rotation (к)

Tertiary Rotation (к)

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{\omega \phi \kappa} \\
y_{\omega \phi \kappa} \\
z_{\omega \phi \kappa}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \kappa & \sin \kappa & 0 \\
-\sin \kappa & \cos \kappa & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{\omega \phi} \\
y_{\omega \phi} \\
z_{\omega \phi}
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{\omega \phi \kappa} \\
y_{\omega \phi \kappa} \\
z_{\omega \phi \kappa}
\end{array}\right]=M_{\kappa}\left[\begin{array}{l}
x_{\omega \phi} \\
y_{\omega \phi} \\
z_{\omega \phi}
\end{array}\right]} \\
& {\left[\begin{array}{c}
x_{\omega \phi} \\
y_{\omega \phi} \\
z_{\omega \phi}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \kappa & -\sin \kappa & 0 \\
\sin \kappa & \cos \kappa & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{\omega \phi \kappa} \\
y_{\omega \phi \kappa} \\
z_{\omega \phi \kappa}
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{\omega \phi} \\
y_{\omega \phi} \\
z_{\omega \phi}
\end{array}\right]=R_{\kappa}\left[\begin{array}{l}
x_{\omega \phi \kappa} \\
y_{\omega \phi \kappa} \\
z_{\omega \phi \kappa}
\end{array}\right]}
\end{aligned}
$$

Rotation in Space

$$
\left[\begin{array}{c}
x_{\omega \phi \kappa} \\
y_{\omega \phi \kappa} \\
z_{\omega \phi \kappa}
\end{array}\right]=M_{\kappa} M_{\phi} M_{\omega}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

// to the image coordinate system
// to the ground coordinate system

$$
\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=R_{\omega} R_{\phi} R_{\kappa}\left[\begin{array}{c}
x_{\omega \phi \kappa} \\
y_{\omega \phi \kappa} \\
z_{\omega \phi \kappa}
\end{array}\right]
$$

// to the ground coordinate system // to the image coordinate system

Rotation in Space

$$
M_{\kappa} M_{\phi} M_{\omega}=M=\left[\begin{array}{llll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right]
$$

where :

$$
\begin{aligned}
& m_{11}=\cos \phi \cos \kappa \\
& m_{12}=\cos \omega \sin \kappa+\sin \omega \sin \phi \cos \kappa \\
& m_{13}=\sin \omega \sin \kappa-\cos \omega \sin \phi \cos \quad \kappa \\
& m_{21}=-\cos \phi \sin \kappa \\
& m_{22}=\cos \omega \cos \kappa-\sin \omega \sin \phi \sin \kappa \\
& m_{23}=\sin \omega \cos \kappa+\cos \omega \sin \phi \sin \quad \kappa \\
& m_{31}=\sin \phi \\
& m_{32}=-\sin \omega \cos \phi \\
& m_{33}=\cos \omega \cos \phi
\end{aligned}
$$

Rotation in Space

$$
R_{\omega} R_{\phi} R_{\kappa}=R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

where :
$r_{11}=\cos \quad \phi \cos \kappa$
$r_{12}=-\cos \phi \sin \kappa$
$r_{13}=\sin \phi$
$r_{21}=\cos \omega \sin \kappa+\sin \omega \sin \phi \cos \kappa$
$r_{22}=\cos \omega \cos \kappa-\sin \omega \sin \phi \sin \kappa$
$r_{23}=-\sin \omega \cos \phi$
$r_{31}=\sin \omega \sin \kappa-\cos \omega \sin \phi \cos \kappa$
$r_{32}=\sin \omega \cos \kappa+\cos \omega \sin \phi \sin \kappa$
$r_{33}=\cos \omega \cos \phi$

Orthogonality Conditions

$$
\begin{gathered}
R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right] \\
r_{11}^{2}+r_{21}^{2}+r_{31}^{2}=1 \\
r_{12}^{2}+r_{22}^{2}+r_{32}^{2}=1 \\
r_{13}^{2}+r_{23}^{2}+r_{33}^{2}=1 \\
r_{11} r_{12}+r_{21} r_{22}+r_{31} r_{32}=0 \\
r_{11} r_{13}+r_{21} r_{23}+r_{31} r_{33}=0 \\
r_{12} r_{13}+r_{22} r_{23}+r_{32} r_{33}=0
\end{gathered}
$$

Positive Rotation Angles: (Right Handed System)

Rotation Angles (ω, ϕ, κ)

Rotation Angles (Azimuth, Pitch, Roll)

Azimuth \equiv Yaw

Photogrammetric Orientation

Interior Orientation

Interior Orientation Parameters

- Interior Orientation Parameters (IOPs) describe the internal characteristics of the implemented camera.
- IOPs include the principal distance, principal point coordinates, and distortion parameters.
- IOPs are determined using a calibration procedure.

Interior Orientation Parameters

- Alternative procedures for camera calibration are well established.
- Laboratory camera calibration (Multi-collimators)
- Indoor camera calibration
- In-situ camera calibration

Analytical camera calibration

Laboratory Calibration: Multi-Collimators \quad :

Indoor Camera Calibration

In-Situ Camera Calibration

Interior Orientation Parameters

- IOPs together with the image coordinates of selected features define a bundle of light rays (image bundle).

Interior Orientation Parameters

- Target function of the Interior Orientation:
- The defined bundle by the IOPs should be as similar as possible to the incident bundle onto the camera at the moment of exposure.

Photogrammetric Orientation

Exterior Orientation

Exterior Orientation Parameters

- Exterior Orientation Parameters (EOPs) - georeferencing parameters - define the position and the attitude of the image bundle relative to the ground coordinate system.
- The position of the bundle is defined by $\left(X_{o}, Y_{o}, Z_{o}\right)$.
- The attitude of the bundle (camera/image coordinate system) relative to the ground coordinate system is defined by the rotation angles (ω, ϕ, κ).
- EOPs can be either:
- Indirectly estimated using Ground Control Points (GCPs), or
- Directly derived using GNSS/INS units onboard the imaging platform.

Exterior Orientation Parameters

- Exterior Orientation Parameters (EOPs) define the position, $r_{c}^{m}(t)$, and orientation $R_{c}^{m}(t)$, of the camera coordinate system relative to the mapping reference frame at the moment of exposure.

Exterior Orientation Parameters

- Indirectly estimated (indirect georeferencing), or
- Directly derived (direct georeferencing)

Exterior Orientation Parameters

(4) Ground Control Points

- Tie Points

Exterior Orientation Parameters

Signalized Targets

Exterior Orientation Parameters

Natural Targets

Exterior Orientation Parameters

Exterior Orientation Parameters

Exterior Orientation Parameters

Direct Georeferencing

Photogrammetric Mathematical Model

Collinearity Equations

Vector Summation Based Point Positioning

Collinearity Equations

- Objective:
- Mathematically represent the general relationship between image and ground coordinates
- Concept:
- Image Point, Object Point, and the Perspective Center are collinear

Collinearity Equations

(a) Image Point

Collinearity Equations

$$
\overrightarrow{\mathbf{o a}}=\lambda \quad \overrightarrow{\mathbf{o A}}
$$

These vectors should be defined w.r.t. the same coordinate system

Frame Camera

Negative Versus Diapositive Films

Collinearity Equations

The Vector Connecting the Perspective Center to the Image Point

$$
\vec{v}_{i}=r_{o a}^{c}=\left[\begin{array}{c}
x_{a}-\text { dist }_{x} \\
y_{a}-\text { dist }_{y} \\
0
\end{array}\right]-\left[\begin{array}{c}
x_{p} \\
y_{p} \\
c
\end{array}\right]=\left[\begin{array}{c}
x_{a}-x_{p}-\text { dist }_{x} \\
y_{a}-y_{p}-\text { dist }_{y} \\
-c
\end{array}\right]
$$

The Vector Connecting the Perspective Center: to the Object Point

$$
\vec{V}_{o}=r_{o A}^{m}=\left[\begin{array}{c}
X_{A} \\
Y_{A} \\
Z_{A}
\end{array}\right]-\left[\begin{array}{c}
X_{o} \\
Y_{o} \\
Z_{o}
\end{array}\right]=\left[\begin{array}{c}
X_{A}-X_{o} \\
Y_{A}-Y_{o} \\
Z_{A}-Z_{o}
\end{array}\right]
$$

w.r.t. the ground coordinate system

Collinearity Equations

$$
\begin{gathered}
\overrightarrow{o a}=\lambda \overrightarrow{o A} \\
\vec{v}_{i}=r_{o a}^{c}=\lambda M(\omega, \varphi, \kappa) \vec{V}_{o}=\lambda
\end{gathered} R_{m}^{c} r_{o A}^{m} \quad\left[\begin{array}{c}
x_{a}-x_{p}-\text { dist }_{x} \\
y_{a}-y_{p}-\text { dist }_{y} \\
-c
\end{array}\right]=\lambda\left[\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right]\left[\begin{array}{c}
X_{A}-X_{o} \\
Y_{A}-Y_{o} \\
Z_{A}-Z_{o}
\end{array}\right] .
$$

Where: λ is a scale factor

- Questions:
- Can you come up with an average estimate of λ ?
- Is λ constant for a given image? Why?

Collinearity Equations

$$
\begin{gathered}
M=R_{m}^{c} \\
x_{a}=x_{p}-c \frac{m_{11}\left(X_{A}-X_{o}\right)+m_{12}\left(Y_{A}-Y_{o}\right)+m_{13}\left(Z_{A}-Z_{o}\right)}{m_{31}\left(X_{A}-X_{o}\right)+m_{32}\left(Y_{A}-Y_{o}\right)+m_{33}\left(Z_{A}-Z_{o}\right)}+d i s t_{x} \\
y_{a}=y_{p}-c \frac{m_{21}\left(X_{A}-X_{o}\right)+m_{22}\left(Y_{A}-Y_{o}\right)+m_{23}\left(Z_{A}-Z_{o}\right)}{m_{31}\left(X_{A}-X_{o}\right)+m_{32}\left(Y_{A}-Y_{o}\right)+m_{33}\left(Z_{A}-Z_{o}\right)}+d i s t_{y} \\
R=R_{c}^{m} \\
x_{a}=x_{p}-c-\frac{r_{11}\left(X_{A}-X_{o}\right)+r_{21}\left(Y_{A}-Y_{o}\right)+r_{31}\left(Z_{A}-Z_{o}\right)}{r_{13}\left(X_{A}-X_{o}\right)+r_{23}\left(Y_{A}-Y_{o}\right)+r_{33}\left(Z_{A}-Z_{o}\right)}+d i s t_{x} \\
y_{a}=y_{p}-c \frac{r_{12}\left(X_{A}-X_{o}\right)+r_{22}\left(Y_{A}-Y_{o}\right)+r_{32}\left(Z_{A}-Z_{o}\right)}{r_{13}\left(X_{A}-X_{o}\right)+r_{23}\left(Y_{A}-Y_{o}\right)+r_{33}\left(Z_{A}-Z_{o}\right)}+d i s t_{y}
\end{gathered}
$$

Collinearity Equations

$$
r_{I}^{m}=r_{c}^{m}+S_{i} R_{c}^{m}(\omega, \phi, \kappa) r_{i}^{c}
$$

Collinearity Equations

$$
\begin{aligned}
& r_{I}^{m}=r_{c}^{m}+S_{i} R_{c}^{m}(\omega, \phi, \kappa) r_{i}^{c} \\
& {\left[\begin{array}{c}
X_{G} \\
Y_{G} \\
Z_{G}
\end{array}\right]=\left[\begin{array}{c}
X_{o} \\
Y_{o} \\
Z_{o}
\end{array}\right]+S_{i} R_{c}^{m}(\omega, \phi, \kappa)\left[\begin{array}{c}
x_{i}-x_{p}-d i s t_{x_{i}} \\
y_{i}-y_{p}-d i s t_{y_{i}} \\
-c
\end{array}\right]} \\
& {\left[\begin{array}{c}
x_{i}-x_{p}-\text { dist }_{x_{i}} \\
y_{i}-y_{p}-\text { dist }_{y_{i}} \\
-c
\end{array}\right]=1 / S_{i} R_{m}^{c}(\omega, \phi, \kappa)\left[\vec{X}_{G}-\vec{X}_{o}\right]=1 / S_{i}\left[\begin{array}{c}
N_{x} \\
N_{y} \\
D
\end{array}\right]} \\
& x_{i}=x_{p}-c^{N_{x}} / D+\text { dist }_{x_{x_{i}}} \\
& y_{i}=y_{p}-c N_{y} / D+\text { dist }_{y_{i_{i}}}
\end{aligned}
$$

Vector Summation Procedure

Collinearity Equations

$$
\begin{gathered}
R=R_{c}^{m} \\
x_{a}=x_{p}-c \frac{r_{11}\left(X_{A}-X_{O}\right)+r_{21}\left(Y_{A}-Y_{O}\right)+r_{31}\left(Z_{A}-Z_{O}\right)}{r_{13}\left(X_{A}-X_{O}\right)+r_{23}\left(Y_{A}-Y_{O}\right)+r_{33}\left(Z_{A}-Z_{O}\right)} \\
y_{a}=y_{p}-c \frac{r_{12}\left(X_{A}-X_{O}\right)+r_{22}\left(Y_{A}-Y_{O}\right)+r_{32}\left(Z_{A}-Z_{O}\right)}{r_{13}\left(X_{A}-X_{O}\right)+r_{23}\left(Y_{A}-Y_{O}\right)+r_{33}\left(Z_{A}-Z_{O}\right)}
\end{gathered}
$$

- Involved parameters:
- Image coordinates ($\mathrm{x}_{\mathrm{a}}, \mathrm{y}_{\mathrm{a}}$)
- Ground coordinates ($\mathrm{X}_{\mathrm{A}}, \mathrm{Y}_{\mathrm{A}}, \mathrm{Z}_{\mathrm{A}}$)
- Exterior Orientation Parameters ($\mathrm{X}_{\mathrm{O}}, \mathrm{Y}_{\mathrm{O}}, \mathrm{Z}_{\mathrm{O}}, \omega, \phi, \kappa$)
- Interior Orientation Parameters ($\mathrm{x}_{\mathrm{p}}, \mathrm{y}_{\mathrm{p}}, \mathrm{c}$, distortion parameters)

Photogrammetric Point Positioning

GNSS/INS-Assisted Photogrammetric System:

Photogrammetric Point Positioning

Multi-Camera Photogrammetric Systems:

Multi-Camera Systems

A rigid-relationship among the cameras

Airborne Mobile Mapping System

Photogrammetric Point Positioning

Multi-Camera Photogrammetric Systems:

Multi-Camera Systems

A rigid-relationship among the cameras

Terrestrial Mobile Mapping System

Photogrammetric Point Positioning

Multi-Camera Photogrammetric Systems:

Multi-Camera Systems
A rigid-relationship among the cameras

Portable Panoramic Image Mapping System

Photogrammetric Point Positioning

GNSS/INS-Assisted Multi-Camera Photogrammetric System:

$$
r_{I}^{m}=r_{b}^{m}(t)+R_{b}^{m}(t) r_{c_{r}}^{b}+R_{b}^{m}(t) R_{c_{r}}^{b} r_{c_{j}}^{c_{r}}+S_{i}^{c_{j}} R_{b}^{m}(t) R_{c_{r}}^{b} R_{c_{j}}^{c_{r}} r_{i}^{c_{j}}
$$

$\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]_{b}^{m}(t)_{G N S S / I N S}=\left[\begin{array}{l}X \\ Y \\ Z\end{array}\right]_{b}^{m}(t)+\left[\begin{array}{l}e_{X} \\ e_{Y} \\ e_{Z}\end{array}\right]_{b}^{m}(t)$
$\underbrace{\left[\begin{array}{c}\omega \\ \phi \\ \kappa\end{array}\right]_{b}^{m}(t)_{G N S S / I N S}=\left[\begin{array}{c}\omega \\ \phi \\ \kappa\end{array}\right]_{b}^{m}(t)+\left[\begin{array}{l}e_{\omega} \\ e_{\phi} \\ e_{\kappa}\end{array}\right]_{b}^{m}(t)}_{c}\left[\begin{array}{l}\Delta \omega \\ \Delta \varphi \\ \Delta \kappa\end{array}\right]_{c j}^{c r}($ prior $)=\left[\begin{array}{c}\Delta \omega \\ \Delta \varphi \\ \Delta \kappa\end{array}\right]_{c j}^{c r}+\left[\begin{array}{l}e_{\Delta \omega} \\ e_{\Delta \varphi} \\ e_{\Delta \kappa}\end{array}\right]_{c j}^{c r}]$

$$
\left.\left[\begin{array}{l}
\Delta X \\
\Delta Y \\
\Delta Z
\end{array}\right]_{c r}^{b} \text { (prior }\right)=\left[\begin{array}{c}
\Delta X \\
\Delta Y \\
\Delta Z
\end{array}\right]_{c r}^{b}+\left[\begin{array}{l}
e_{\Delta X} \\
e_{\Delta Y} \\
e_{\Delta Z}
\end{array}\right]_{c r}^{b}
$$

$$
\left.\left[\begin{array}{c}
\Delta \omega \\
\Delta \varphi \\
\Delta \kappa
\end{array}\right]_{c r}^{b} \text { (prior }\right)=\left[\begin{array}{c}
\Delta \omega \\
\Delta \varphi \\
\Delta \kappa
\end{array}\right]_{c r}^{b}+\left[\begin{array}{l}
e_{\Delta \omega} \\
e_{\Delta \varphi} \\
e_{\Delta \kappa}
\end{array}\right]_{c r}^{b} \rightarrow X_{G}
$$

Photogrammetric Point Positioning

Photogrammetric Point Positioning

Bundle Block Adjustment

Bundle Block Adjustment

Bundle Block Adjustment

- Direct relationship between image and ground coordinates
- We measure the image coordinates in the images of the block.
- Using the collinearity equations, we can relate the image coordinates, corresponding ground coordinates, IOPs, and EOPs.
- Using a simultaneous least squares adjustment, we can solve for the:
- Ground coordinates of tie points,
- EOPs, and
- IOPs (Camera Calibration Procedure).

Bundle Block Adjustment: Concept

- The image coordinate measurements and IOPs define a bundle of light rays.
- The EOPs define the position and attitude of the bundles in space.
- During the adjustment: The bundles are rotated (ω, ϕ, κ) and shifted $\left(\mathrm{X}_{\mathrm{o}}, \mathrm{Y}_{\mathrm{o}}, \mathrm{Z}_{\mathrm{o}}\right)$ until:
- Conjugate light rays intersect as well as possible at the locations of object space tie points.
- Light rays corresponding to ground control points pass through the object points as close as possible.

Bundle Block Adjustment: Concept

Bundle Block Adjustment: Concept

A Ground Control Points

- Tie Points

Least Squares Adjustment

- Prior to the adjustment, we need to identify:
- The unknown parameters
- Observable quantities
- The mathematical relationship between the unknown parameters and the observable quantities
- Linearize the mathematical relationship (if it is not linear)
- Apply least squares adjustment formulas

Unknown Parameters

- Unknown parameters might include:
- Ground coordinates of tie points (points that appear in more than one image)
- Exterior orientation parameters of the involved imagery
- Interior orientation parameters of the involved cameras (for camera calibration purposes)

Observable Quantities

- Observable quantities might include:
- The ground coordinates of control points
- Image coordinates of tie as well as control points
- Interior orientation parameters of the involved cameras
- Exterior orientation parameters of the involved imagery (from a GNSS/INS unit onboard)

Mathematical Model

$$
\begin{aligned}
& x_{a}=x_{p}-c \frac{r_{11}\left(X_{A}-X_{O}\right)+r_{21}\left(Y_{A}-Y_{O}\right)+r_{31}\left(Z_{A}-Z_{O}\right)}{r_{13}\left(X_{A}-X_{O}\right)+r_{23}\left(Y_{A}-Y_{O}\right)+r_{33}\left(Z_{A}-Z_{O}\right)}+\Delta x+e_{x} \\
& y_{a}=y_{p}-c \frac{r_{12}\left(X_{A}-X_{O}\right)+r_{22}\left(Y_{A}-Y_{O}\right)+r_{32}\left(Z_{A}-Z_{O}\right)}{r_{13}\left(X_{A}-X_{O}\right)+r_{23}\left(Y_{A}-Y_{O}\right)+r_{33}\left(Z_{A}-Z_{O}\right)}+\Delta y+e_{y} \\
& {\left[\begin{array}{l}
e_{x} \\
e_{y}
\end{array}\right] \sim\left(0, \sigma_{o}^{2} P^{-1}\right)}
\end{aligned}
$$

Mathematical Model

- $\Delta \mathrm{x}=\Delta \mathrm{x}_{\text {Radial Lens Distortion }}+\Delta \mathrm{x}_{\text {Decentric Lens Distortion }}$ $\Delta \mathrm{X}_{\text {Atmospheric Refraction }}+\Delta \mathrm{X}_{\text {Affine Deformation }} \quad+$ etc....
- $\Delta \mathrm{y}=\Delta \mathrm{y}_{\text {Radial Lens Distortion }}+\Delta \mathrm{y}_{\text {Decentric Lens Distortion }}+$ $\Delta y_{\text {Atmospheric Refraction }}+\Delta y_{\text {Affine Deformations }}+$ etc....

Distortion Parameters

$\Delta x_{\text {Radial Lens Distortion }}=\bar{x}\left(k_{1} r^{2}+k_{2} r^{4}+k_{3} r^{6}+\ldots\right)$
$\Delta y_{\text {Radial Lens Distortion }}=\bar{y}\left(k_{1} r^{2}+k_{2} r^{4}+k_{3} r^{6}+\ldots.\right)$ $\Delta x_{\text {Deeentric Lens Distortion }}=\left(1+p_{3}^{2} r^{2}\right)\left\{p_{1}\left(r^{2}+2 \bar{x}^{2}\right)+2 p_{2} \bar{x} \bar{y}\right\}$ $\Delta y_{\text {Decentric Lens Distortion }}=\left(1+p_{3}^{2} r^{2}\right)\left\{2 p_{1} \bar{x} \bar{y}+p_{2}\left(r^{2}+2 \bar{y}^{2}\right)\right\}$

$$
\text { where: } \begin{aligned}
\mathrm{r}= & \left\{\left(\mathrm{x}-\mathrm{x}_{\mathrm{p}}\right)^{2}+\left(\mathrm{y}-\mathrm{y}_{\mathrm{p}}\right)^{2}\right\}^{0.5} \\
& \bar{x}=x-x_{p} \\
& \bar{y}=y-y_{p}
\end{aligned}
$$

Least Squares Adjustment

- Gauss Markov Model Observation Equations

$$
\begin{array}{ll}
y=A & x+e \quad e \sim\left(0, \sigma_{o}^{2} P^{-1}\right) \\
y & n \times 1 \text { observation vector } \\
A & n \times m \text { design matrix } \\
x & m \times 1 \text { vector of unknowns } \\
e & n \times 1 \text { noise contaminat ing the observation vector } \\
\sigma_{o}^{2} P^{-1} & n \times n \text { variance covariance matrix of the noise vector }
\end{array}
$$

Least Squares Adjustment

$$
\begin{aligned}
& \hat{x}=\left(A^{T} P A\right)^{-1} A^{T} P y \\
& D\{\hat{x}\}=\sigma_{o}^{2}\left(A^{T} P A\right)^{-1} \\
& \widetilde{e}=y-A \hat{x} \\
& \hat{\sigma}_{o}^{2}=\left(\widetilde{e}^{T} P \widetilde{e}\right) /(n-m)
\end{aligned}
$$

Non-Linear System

$Y=a(X)+e$
$a(X)$ is the non - linear function
We use Taylor Series Expansion
$Y \approx a\left(X_{o}\right)+\left.\frac{\partial a}{\partial X}\right|_{X_{o}}\left(X-X_{o}\right)+e$
(We ignore higher order terms)
Where :
X_{o} is approximat e values for the unknown parameters
$Y-a\left(X_{o}\right)=\left.\frac{\partial a}{\partial X}\right|_{X_{o}}\left(X-X_{o}\right)+e$
$y=A x+e$
Where :
$y=Y-a\left(X_{o}\right)$
$A=\left.\frac{\partial a}{\partial X}\right|_{X_{0}}$

- Iterative solution for the unknown parameters
- When should we stop the iterations?

Example (4 Images in Two Strips)

Δ Control Point

- Tie Point

III

Balance Between Observations \& Unknowns

- Number of observations:
$-4 \times 6 \times 2=48$ observations (collinearity equations)
- Number of unknowns:
$-4 \times 6+3 \times 4=36$ unknowns
- Redundancy:
- 12
- Assumptions:
- IOPs are assumed to be known and errorless.
- Ground coordinates of the control points are errorless.

Structure of the Design Matrix (BA)

- $Y=a(X)+e$

$$
\mathrm{e} \sim\left(0, \sigma^{2} \mathrm{P}^{-1}\right)
$$

- Using approximate values for the unknown parameters $\left(\mathrm{X}^{0}\right)$ and partial derivatives, the above equations can be linearized leading to the following equations:
- $\mathrm{y}_{48 \times 1}=\mathrm{A}_{48 \times 36} \mathrm{x}_{36 \times 1}+\mathrm{e}_{48 \times 1} \quad \mathrm{e} \sim\left(0, \sigma^{2} \mathrm{P}^{-1}\right)$

Structure of the Design Matrix

Structure of the Normal Matrix

Sample Data

- 2 cameras.
- 4 images.
- 16 points.
- All the points appear in all the images
- Two images were captured by each camera

Structure of the Normal Matrix: Example

Observation Equations

$$
\begin{gathered}
y_{n \times 1}=A_{n \times m} x_{m \times 1}+e_{n \times 1} \quad e \sim\left(0, \sigma_{o}^{2} P^{-1}\right) \\
y_{n \times 1}=A_{1_{n 66 m_{1}}} x_{1_{1_{m \times 1}}}+A_{2_{n \times m 2}} x_{2_{3 m_{2} \times 1}}+e_{n \times 1} \\
y_{n \times 1}=\left[\begin{array}{ll}
A_{1_{n \times 6 m 1}} & A_{2_{n \times 3 m_{2}}}
\end{array}\right]\left[\begin{array}{c}
x_{1_{6_{m \times 1}}} \\
x_{2_{3_{m \times 1} \times 1}}
\end{array}\right]+e_{n \times 1}
\end{gathered}
$$

- $\mathbf{n} \equiv$ Number of observations (image coordinate measurements)
- $m \equiv$ Number of unknowns:
- $\mathrm{m}_{1} \equiv$ Number of images $\Rightarrow \mathbf{6} \mathrm{m}_{1}$ (EOPs of the images)
- $\mathbf{m}_{\mathbf{2}} \equiv$ Number of tie points $\Rightarrow \mathbf{3} \mathbf{m}_{\mathbf{2}}$ (ground coordinates of tie points)
- $m=6 m_{1}+3 m_{2}$

Normal Equation Matrix

$$
\begin{aligned}
& N_{\left(6 m_{1}+3 m_{2}\right) \times\left(6 m_{1}+3 m_{2}\right)}=\left[\begin{array}{l}
A_{1}^{T} \\
A_{2}^{T}
\end{array}\right] P\left[\begin{array}{ll}
A_{1} & A_{2}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& C_{\left(6 m_{1}+3 m_{2} \times 1\right.}=\left[\begin{array}{c}
A_{1}^{T} \\
A_{2}^{T}
\end{array}\right] \text { P } y=\left[\begin{array}{l}
A_{1}^{T} P y \\
A_{2}^{T} P y
\end{array}\right]=\left[\begin{array}{l}
C_{1_{6 \text { max }}} \\
C_{2_{3 m \times x}}
\end{array}\right]
\end{aligned}
$$

Normal Equation Matrix

- N_{11} is a block diagonal matrix with $6 x 6$ sub-blocks along the diagonal.
- N_{22} is a block diagonal matrix with 3×3 sub-blocks along the diagonal.
- Question: Under which circumstances will we deviate from this structure?

Reduction of the Normal Equation Matrix

$$
\begin{aligned}
& N_{11_{6 m_{1} \times 6 m_{1}}} \hat{x}_{1_{6 m_{1} \times 1}}+N_{12_{6 m_{1} \times 3 m_{2}}} \hat{x}_{2_{3 m_{2} \times 1}}=C_{1_{6 m_{1} \times 1}} \\
& N_{12_{3 m_{2} \times 6 m_{1}}^{T}}^{T} \hat{x}_{1_{6 m_{1} \times 1}}+N_{22_{3 m_{2} \times 3 m_{2}}} \hat{x}_{2_{3 m_{2} \times 1}}=C_{2_{3 m_{2} \times 1}}
\end{aligned}
$$

- Solving for x_{2} first:
- $3 \mathrm{~m}_{2}<6 \mathrm{~m}_{1}$
- Remember: N_{11} is a block diagonal matrix with 6 x 6 sub-blocks along the diagonal.

Reduction of the Normal Equation Matrix

$$
\begin{aligned}
& N_{11_{6 m_{1} \times 6 m_{1}}} \hat{x}_{1_{6 m_{1} \times 1}}+N_{12_{6 m_{1} \times 3 m_{2}}} \hat{x}_{2_{3 m_{2} \times 1}}=C_{1_{6 m_{1} \times 1}} \\
& N_{12_{3 m_{2} \times 6 m_{1}}}^{T} \hat{x}_{1_{6 m_{1} \times 1}}+N_{22_{3 m_{2} \times 3 m_{2}}} \hat{x}_{2_{3 m_{2} \times 1}}=C_{2_{3 m_{2} \times 1}}
\end{aligned}
$$

- Solving for x_{1} first:
- $6 \mathrm{~m}_{1}<3 \mathrm{~m}_{2}$
- Remember: N_{22} is a block diagonal matrix with 3×3 sub-blocks along the diagonal.

Reduction of the Normal Equation Matrix

- Variance covariance matrix of the estimated parameters:

$$
\begin{aligned}
& D\left\{\hat{x}_{1_{6 m \times 1}}\right\}=\sigma_{o}^{2}\left(N_{11_{6 m \times 6 m 1}}-N_{12_{6 m \times \infty m_{2}}} N_{22_{3 m_{2} \times m_{2}}}^{-1} N_{12_{3 m_{2} \times 6 \sigma_{1}}^{T}}\right)^{-1}
\end{aligned}
$$

Building the Normal Equation Matrix

- We would like to investigate the possibility of sequentially building up the normal equation matrix without fully building the design matrix.
- $\left(\mathrm{x}_{\mathrm{ij}}, \mathrm{y}_{\mathrm{ij}}\right)$ image coordinates of the $\mathrm{i}^{\text {th }}$ point in the $\mathrm{j}^{\text {th }}$ image

$$
\begin{aligned}
& y_{2 \times 1_{i j}}=A_{1_{2 \times 66_{i j}}} x_{1_{6 \times 1 j}}+A_{2_{2 \times 33_{i j}}} x_{2_{3 \times 1_{i}}}+e_{2 \times 1_{i j}} \\
& y_{2 \times 1_{i j}}=\left[\begin{array}{ll}
A_{1_{2 \times 6 i j}} & A_{22 \times 3_{i j}}
\end{array}\right]\left[\begin{array}{l}
x_{1_{6 \times 1}} \\
x_{2_{3 \times 1_{i}}}
\end{array}\right]+e_{2 \times 1_{i j}}
\end{aligned}
$$

Normal Equation Matrix

$$
\begin{aligned}
& y_{2 \times 1_{i j}}=\left[\begin{array}{ll}
A_{1_{2 \times \alpha_{i j}}} & A_{22 \times x_{i j}}
\end{array}\right]\left[\begin{array}{l}
x_{16 \times \lambda_{j}} \\
x_{23 \times x_{i}}
\end{array}\right]+e_{2 \times 1_{i j}}
\end{aligned}
$$

Normal Equation Matrix

$$
\begin{aligned}
& {\left[\begin{array}{lll}
A_{1_{6 \times 2 i j}}^{T} & P_{i j} A_{1_{2 \times 6, i j}} & A_{1_{6 \times 2 i j}}^{T} \\
A_{2_{3 \times 2 i j}}^{T} & P_{i j} A_{2_{2 \times 3}} A_{1_{2 \times 6 i j}} & A_{2_{3 \times 2 i j}}^{T}
\end{array} P_{i j} A_{2_{2 \times 3 i j}}\right]\left[\begin{array}{l}
x_{1_{6 \times 1}} \\
x_{2_{3 \times 1_{i}}}
\end{array}\right]=\left[\begin{array}{lll}
A_{1_{6 \times 2 i j}}^{T} & P_{i j} & y_{2 \times 1_{i j}} \\
A_{2_{3 \times 2 i j}}^{T} & P_{i j} & y_{2 \times 1_{i j}}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
N_{11_{i j}} & N_{12_{i j}} \\
N_{12_{i j}}^{T} & N_{22_{i j}}
\end{array}\right]_{9 \times 9}\left[\begin{array}{l}
x_{1_{6 \times 1}} \\
x_{2_{3 \times 1_{i}}}
\end{array}\right]_{9 \times 1}=\left[\begin{array}{c}
C_{1_{i j}} \\
C_{2_{i j}}
\end{array}\right]_{9 \times 1}}
\end{aligned}
$$

- Note: We cannot solve this matrix for the:
- The Exterior Orientation Parameters of the $\mathrm{j}^{\text {th }}$ image, and
- The ground coordinates of the $\mathrm{i}^{\text {th }}$ point.

Normal Equation Matrix

$$
\left[\begin{array}{ll}
N_{11_{6 m_{1} \times 6 m_{1}}} & N_{12_{6 m_{1} \times 3 m_{2}}} \\
N_{12_{3 m_{2} \times 6 m_{1}}}^{T} & N_{22_{3 m_{2} \times 3 m_{2}}}
\end{array}\right]\left[\begin{array}{l}
\hat{x}_{1_{6 m_{1} \times 1}} \\
\hat{x}_{2_{3 m_{2} \times 1}}
\end{array}\right]=\left[\begin{array}{l}
C_{1_{6 m_{1} \times 1}} \\
C_{2_{3 m_{2} \times 1}}
\end{array}\right]
$$

- Question: How can we sequentially build the above matrices?
- Assumption: All the points are common to all the images.

N_{11} - Matrix

$$
N_{\left.11_{(G m y(m)}\right)}=\left[\begin{array}{cccccc}
\sum_{i=1}^{m_{2}} N_{11_{i 1}} & 0 & 0 & \cdots & \cdots & 0 \\
0 & \sum_{i=1}^{m_{2}} N_{11_{i 2}} & 0 & \cdots & \cdots & 0 \\
0 & 0 & \sum_{i=1}^{m_{2}} N_{11_{13}} & \cdots & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \cdots & \sum_{i=1}^{m_{2}} N_{11_{i i_{10}}}
\end{array}\right]
$$

- If all the points are not common to all the images:
- The summation should be carried over all the points that appear in the image under consideration.

N_{22} - Matrix

$$
N_{22_{\left(m_{2} \times m_{2}\right)}}=\left[\begin{array}{cccccc}
\sum_{j=1}^{m_{1}} N_{22_{1 j}} & 0 & 0 & \cdots & \cdots & 0 \\
0 & \sum_{j=1}^{m_{1}} N_{22_{2 j}} & 0 & \cdots & \cdots & 0 \\
0 & 0 & \sum_{j=1}^{m_{1}} N_{22_{3 j}} & \cdots & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \cdots & \sum_{j=1}^{m_{1}} N_{22_{m 2 j}}
\end{array}\right]
$$

- If all the points are not common to all the images:
- The summation should be carried over all the images within which the point under consideration appears.

N_{12} - Matrix

- If point " i " does not appear in image " j ":
- $\left(\mathrm{N}_{12}\right)_{\mathrm{ij}}=0$

C - Matrix

$$
C_{1_{6_{m 11} \times 1}}=\left[\begin{array}{c}
\sum_{i=1}^{m_{2}} C_{1_{i 1}} \\
\sum_{i=1}^{m_{2}} C_{1_{i 2}} \\
\sum_{i=1}^{m_{2}} C_{1_{i 3}} \\
\vdots \\
\vdots \\
\sum_{i=1}^{m_{2}} C_{1_{i m_{1}}}
\end{array}\right]
$$

$$
C_{2_{3 m_{2} \times 1}}=\left[\begin{array}{c}
\sum_{j=1}^{m_{1}} C_{2_{1 j}} \\
\sum_{j=1}^{m_{1}} C_{2_{2 j}} \\
\sum_{j=1}^{m_{1}} C_{2_{3 j}} \\
\vdots \\
\vdots \\
\sum_{j=1}^{m_{1}} C_{2_{m_{2 j}}}
\end{array}\right]
$$

- Once again, we assumed that all the points are common to all the images.

Precision of Bundle Block Adjustment

- The precision of the estimated EOPs as well as the ground coordinates of tie points can be obtained by the product of:
- The estimated variance component, and
- The inverse of the normal equation matrix (cofactor matrix).
- The precision depends on the following factors:
- Geometric configuration of the image block
- Base-Height ratio
- Image scale
- Image coordinate measurement precision

Precision of Bundle Block Adjustment

- Precision of a single model: If we have
- Bundle block adjustment with additional parameters that compensate for various distortions
- Regular blocks with 60% overlap and 20% side lap
- Signalized targets
$\sigma_{X Y}= \pm 3 \mu \mathrm{~m}$
$\sigma_{Z}= \pm 0.003 \%$ of the camera principal distance (NA and WA cameras)
$\sigma_{Z}= \pm 0.004 \%$ of the camera principal distance (SWA cameras)
These precision values are given in the image space

Camera Classification

- $\alpha<75^{\circ}$ Normal angle camera (NA)
- $100^{\circ}>\alpha>75^{\circ}$ Wide angle camera (WA)
- $\alpha>100^{\circ}$ Super wide angle camera (SWA)

Precision of Bundle Block Adjustment

$$
\begin{aligned}
& \sigma_{X}=\frac{Z}{c} \sigma_{x} \\
& \sigma_{Y}=\frac{Z}{c} \sigma_{y}
\end{aligned}
$$

Precision of Bundle Block Adjustment

Vertical Precision
Flight Direction $\equiv \mathbf{x}$-axis

$$
\begin{aligned}
& \mathbf{P}_{\mathbf{x}} / \mathbf{B}=\mathbf{c} / \mathbf{H} \\
& \mathbf{H}=\mathbf{B} \mathbf{c} / \mathbf{P}_{\mathbf{x}}
\end{aligned}
$$

Precision of Bundle Block Adjustment

$$
\begin{aligned}
& \text { Vertical Precision } \\
& \qquad \sigma_{Z}=\frac{Z}{c} \frac{Z}{B} \sigma_{p_{x}}
\end{aligned}
$$

Advantages of Bundle Block Adjustment

- Most accurate triangulation technique since we have direct transformation between image and ground coordinates.
- Straight forward to include parameters that compensate for various deviations from the collinearity model.
- Straight forward to include additional observations:
- GNSS/INS observations at the exposure stations
- Object space distances
- Can be used for normal, convergent, aerial, and close range imagery
- After the adjustment, the EOPs can be set on analogue and analytical plotters for compilation purposes.

Photogrammetric Compilation

Disadvantages of Bundle Block Adjustment

- Model is non linear: approximations as well as partial derivatives are needed.
- Requires computer intensive computations.
- Analogue instruments cannot be used (they cannot measure image coordinate measurements).
- The adjustment cannot be separated into planimetric and vertical adjustment.

Bundle Adjustment: Final Remarks

- Elementary Unit: Images
- Measurements: Image coordinates
- Mathematical model: Collinearity equations
- Instruments: Comparators, analytical plotters, and Digital Photogrammetric Workstations (DPW)
- Required computer power: Very large
- Expected accuracy: High

Special Cases

- Resection
- Intersection
- Stereo-pair orientation
- Relative orientation

Resection

- We are dealing with one image.
- We would like to determine the EOPs of this image using GCPs.
- Q : What is the minimum GCPs requirements?
- At least 3 non-collinear GCPs are required to estimate the 6 EOPs.
- At least 5 non-collinear (well distributed in 3-D) GCPs are required to estimate the 6 EOPs and the $3 \operatorname{IOPs}\left(x_{p}, y_{p}, c\right)$.
- Critical surface:
- The GCPs and the perspective center lie on a common cylinder.

Resection

Resection - Critical Surface

- Question: Which one of the EOPs cannot be determined?

Intersection

- We are dealing with two images.
- The EOPs of these images are available.
- The IOPs of the involved camera(s) are also available.
- We want to estimate the ground coordinates of points in the overlap area.
- For each tie point, we have:
- 4 Observation equations
- 3 Unknowns
- Redundancy = 1
- Non-linear model: approximations are needed

Intersection

Intersection: Linear Model

Intersection: Linear Model

$$
\begin{array}{r}
\vec{B}=\left[\begin{array}{c}
X_{O_{r}}-X_{O_{l}} \\
Y_{O_{r}}-Y_{O_{l}} \\
Z_{O_{r}}-Z_{O_{l}}
\end{array}\right] \cdot \mathrm{T} \\
\vec{V}_{l}=\lambda R_{\left(\omega_{l}, \phi_{l}, \kappa_{l}\right)}\left[\begin{array}{c}
x_{l}-x_{p} \\
y_{l}-y_{p} \\
-c
\end{array}\right] \\
\vec{V}_{r}=\mu R_{\left(\omega_{r}, \phi_{r}, \kappa_{r}\right)}\left[\begin{array}{c}
x_{r}-x_{p} \\
y_{r}-y_{p} \\
-c
\end{array}\right]
\end{array}
$$

Intersection: Linear Model

$$
\begin{aligned}
& \vec{V}_{l}=\vec{B}+\vec{V}_{r} \\
& {\left[\begin{array}{c}
X_{o_{r}}-X_{o_{l}} \\
Y_{o_{r}}-Y_{o_{l}} \\
Z_{o_{r}}-Z_{o_{l}}
\end{array}\right]=\lambda R_{\left(\omega_{l}, \phi_{l}, \kappa_{l}\right)}\left[\begin{array}{c}
x_{l}-x_{p} \\
y_{l}-y_{p} \\
-c
\end{array}\right]-\mu R_{\left(\omega_{r}, \phi_{r}, x_{r}\right)}\left[\begin{array}{c}
x_{r}-x_{p} \\
y_{r}-y_{p} \\
-c
\end{array}\right]}
\end{aligned}
$$

- Three equations in two unknowns (λ, μ).
- They are linear equations.

Intersection: Linear Model

$$
\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{c}
X_{O_{l}} \\
Y_{O_{l}} \\
Z_{O_{l}}
\end{array}\right]+\lambda R_{\left(\omega_{l}, \phi_{l}, \kappa_{i}\right)}\left[\begin{array}{c}
x_{l}-x_{p} \\
y_{l}-y_{p} \\
-c
\end{array}\right]
$$

Or:

$$
\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{c}
X_{O_{r}} \\
Y_{O_{r}} \\
Z_{O_{r}}
\end{array}\right]+\mu R_{\left(\omega_{r}, \phi_{r}, K_{r}\right)}\left[\begin{array}{c}
x_{r}-x_{p} \\
y_{r}-y_{p} \\
-c
\end{array}\right]
$$

Stereo-pair Orientation

- Given:
- Stereo-pair: two images with at least 50% overlap
- Image coordinates of some tie points
- Image and ground coordinates of control points
- Required:
- The ground coordinates of the tie points
- The EOPs of the involved images
- Mini-Bundle Adjustment Procedure

Stereo-pair Orientation

- Example:
- Given:
- 1 Stereo-pair
- 20 tie points
- No ground control points
- Question:
- Can we estimate the ground coordinates of the points as well as the exterior orientation parameters of that stereo-pair?
- Answer:
- NO

Summary

- Photogrammetry: Definition and applications
- Photogrammetric tools:
- Rotation matrices
- Photogrammetric orientation: interior and exterior orientation
- Collinearity equations/conditions
- Photogrammetric bundle adjustment
- Structure of the design and normal matrices
- Special cases:
- Resection, intersection, and stereo-pair orientation

