

Chapters 1 - 3: Overview

- Photogrammetric mapping: introduction, applications, and tools
- GNSS/INS-assisted geo-referencing of photogrammetric and LiDAR mapping systems
- LiDAR mapping: principles, applications, mathematical model, and error sources and their impact.
- This chapter will be focusing on the Quality Assurance (QA) and Quality Control (QC) of the LiDAR Mapping process:
 - QA: system calibration
 - QC: LiDAR data validation

Chapter 4

QUALITY ASSURANCE AND QUALITY CONTROL OF LIDAR MAPPING

Overview

- Motivation
- Quality Assurance (QA) and Quality Control (QC)
 - Introduction
 - Prerequisites
- QA/QC of Photogrammetric Mapping
- QA/QC of LiDAR Mapping:
 - LiDAR system calibration
 - Geometric validation of LiDAR data
- Concluding Remarks

Motivation

- There has been a significant advancement in the remote sensing and mapping technology.
 - <u>Digital cameras</u> provide an alternative to conventional large format analogue cameras for rapid data collection.
 - <u>Direct georeferencing</u> is providing the means for an almost control-free mapping environment.
 - <u>LiDAR</u> provides a dense point cloud representing the object space surface, and thus offers a fast and accurate way of obtaining a Digital Surface Model (DSM).
- Effective utilization of these advances mandates the development of <u>reliable</u>, <u>practical</u>, and <u>standardized</u> procedures for the Quality Assurance (QA) and Quality Control (QC) of the mapping process.

Quality Assurance & Quality Control

- Quality Assurance (pre-mission):
 - Management activities to ensure that a process, item, or service <u>will be</u> of the quality needed by the user
 - It deals with creating management controls that cover planning, implementation, and review of data collection.
 - Key activity in QA is the <u>calibration procedure</u>.
- Quality Control (post-mission):
 - Provide routines and consistent checks to ensure <u>available</u> data integrity, correctness, and completeness
 - Check whether the desired quality has been achieved

Quality Assurance & Quality Control

- To develop effective QA/QC procedures, we need to understand the mechanism of the mapping process including:
 - Data acquisition systems,
 - Error sources (random and systematic),
 - How to mitigate the impact of these error sources,
 - Nature of available data,
 - Data processing algorithms, and
 - Nature of delivered product.

Quality Assurance & Quality Control

- The presented approach in this chapter/course has been designed to provide:
 - QA/QC for emerging mapping systems
 - QC measures for every step of the mapping process (e.g., sensor/system calibration, stability analysis, position/orientation determination, extracted features, delivered product)
 - A set of expected problems, procedures for the detection of instances of such problems, and approaches to fixing problems whenever detected
 - QC is not only concerned with accepting or rejecting a product
 - A closed loop QA/QC process
 - Minimal control requirements for the QA/QC process

Photogrammetric Mapping

- Photogrammetric quality assurance include:
 - Percentage of overlap
 - Percentage of side lap
 - Flying height
 - Base-height ratio
 - Number and distribution of tie points
 - Number and distribution of ground control points
 - Scanning resolution (analog images)
 - Georeferencing procedure
 - Camera calibration
 - System calibration
 - Stability analysis of the system calibration parameters

- One of the key issues in quality assurance of data acquisition systems is the calibration process.
- Camera calibration:
 - Laboratory calibration,
 - Indoor calibration, and
 - In-situ calibration
- Total system calibration:
 - Camera calibration (IOPs)
 - Spatial and rotational offsets between various system components (e.g., camera, GNSS, and INS)
 - Time offsets (synchronization)
- Stability analysis:

- Ensure that the estimated parameters do not significantly change

Laboratory Calibration: Multi-Collimators

Laser Scanning

Indoor Camera Calibration

In-Situ Camera Calibration

Photogrammetric Quality Control

- Photogrammetric reconstruction is based on redundant measurements.
- Results from the photogrammetric triangulation gives quantitative measures of the precision of the reconstruction outcome.
 - A posteriori variance factor/variance component (overall measure of the quality of fit between the observed quantities and estimated unknowns as defined by the used model)
 - Variance-covariance matrix for the derived object coordinates
 - These values can be compared with expected nominal values.
- Independent measure for accuracy verification can be established using check point analysis.
 - Photogrammetric coordinates are compared with independently measured coordinates (e.g., GNSS survey) → RMSE analysis.

Photogrammetric Quality Control

LiDAR Mapping

.aser Scanning

- Optimum mission time

– Pulse repetition rate

- Beam divergence angle

Percentage of overlap

– System calibration

– Stability analysis

– Flying height

– Scan angle

- One can assume that the derived point cloud after system calibration are only contaminated by random errors.
- Usually accomplished in several steps:
 - Laboratory calibration,
 - Platform calibration, and
 - In-flight calibration

- In-Flight Calibration:
 - Utilizes a calibration test field composed of control surfaces for the estimation of biases and systematic errors in the LiDAR system parameters.
 - The observed discrepancies between the LiDAR and control surfaces are used to determine the biases and systematic errors in the system parameters (e.g., boresight roll and pitch angles and scale parameters).

- <u>**Target Function:**</u> minimize the normal distance between the laser point footprint and a known (control) surface.
- Use the LiDAR equation to estimate the error parameters that minimize the cost of the target function.
- Caution: flight and control surface configurations should be carefully established.

Only possible if we are dealing with a transparent system

• (X_A, Y_A, Z_A), (X_B, Y_B, Z_B), and (X_C, Y_C, Z_C) ground coordinates of the control patch

$r_{I}^{m} = r_{b}^{m}(t) + R_{b}^{m}(t) r_{lu}^{b} + R_{b}^{m}(t) R_{lu}^{b} R_{lb}^{lu}(t) r_{I}^{lb}(t)$

- Target function: determine the system parameters that minimize the determinant values for the given control patches.
- Challenges:
 - How can we acquire control surfaces?
 - LiDAR raw measurements $\{r_b^m(t), R_b^m(t), R_{lb}^{lu}(t), r_I^{lb}(t)\}$ are needed (not always available).

• The ground control surface can be generated from a wellcalibrated and well-georeferenced photogrammetric system.

Ayman F. Habib

- Status of current calibration methods:
 - There is lack of a commonly accepted calibration methodology.
 - System raw measurements are required.
 - Estimated parameters are limited.
 - Manual and empirical approaches are utilized.
 - Calibration sites with control targets are required.
 - For example, buildings and runways
 - Calibration is not possible for end-users using point cloud coordinates in overlapping strips.

- <u>Conceptual Basis</u>: Estimate the system parameters that minimize discrepancies between derived surfaces from multiple flight lines while reducing ground control requirements
 - This process requires establishing the optimal flight configuration that maximizes the impact of biases in the system parameters.

DPRG

LiDAR QA: System Calibration

- Several LiDAR system calibration techniques can be introduced according to the nature of available data.
- -<u>Simplified Calibration</u>: With some constraints on the flight configuration and ground coverage, we can conduct the calibration using only the point cloud coordinates.
- -Quasi-Rigorous Calibration: Using the trajectory data and timetagged point cloud coordinates, we can estimate the system parameters with fewer constraints on the flight configuration.
- -<u>**Rigorous Calibration:**</u> With the availability of raw measurements, the calibration can be conducted without any assumptions regarding the flight configuration and ground coverage.

Simplified Calibration

- LiDAR Data in Overlapping Parallel Strips
 - ✓ Point cloud coordinates
 - ✓ Raw measurements are not necessarily available

• Assumptions:

- o Linear scanner,
 - Vertical scanner,
 - o Parallel flight lines,
 - Terrain-height variations are minimal compared to
 - the flying height, and
 - Small biases in the boresight angles
- Can handle any type of terrain coverage
- Cannot handle control points

Quasi-Rigorous Calibration

- LiDAR Data in Overlapping Strips
 - ✓ Point cloud coordinates with the time tag
 - ✓ Time-tagged trajectory

• Assumptions:

- Vertical scanner,
- Small biases in the boresight angles
- Can handle parallel & cross strips
- Can handle any type of terrain coverage
- Can handle control points

• LiDAR Data in Overlapping Strips

✓ Point cloud coordinates together with the system raw measurements (position and the attitude of each pulse as well as the measured scan angles and ranges)

• LiDAR Data in Overlapping Strips

 ✓ Point cloud coordinates together with the system raw measurements (position and the attitude of each pulse as well as the measured scan angles and ranges)

• Assumptions:

- o None
- Can handle parallel & cross strips
- Can handle any type of terrain coverage
- Can handle control points

Static System Calibration

• Sensor modelling is a pre-requisite to the system calibration process.

Static System Calibration

- Assumptions for the **Ideal Scanner Model**:
 - Trunnion, vertical, and collimation axes intersect at a single point (laser beam firing point).
 - Trunnion, vertical, and collimation axes are orthogonal to each other.

DPRG

Static System Calibration

- Deviations from the Ideal Scanner Model (1):
 - **Trunnion-Vertical axes eccentricity** (e_{vh})
 - *Vertical-Collimation axes eccentricity* (e_{vz})
 - **Trunnion-Collimation axes eccentricity** (e_{hz})

DPRG

Static System Calibration

- Deviations from the Ideal Scanner Model (2):
 - *<u>Range error:</u>* Additive and scale errors
 - *Trunnion axis error:* Non-orthogonality of the trunnion and vertical axes
 - *Horizontal collimator error:* Non-orthogonality of the trunnion and collimator axes
 - *Vertical index error: Constant error in the vertical angle reading*

Static System Calibration

• Functional Model for System Calibration

•
$$r_I^{lu} = R_{lb}^{lu}(\alpha + \Delta \alpha, \theta + \Delta \theta) \begin{bmatrix} 0 \\ 0 \\ -(S_\rho \rho + \Delta \rho) \end{bmatrix}$$

- $\Delta \alpha$ and $\Delta \theta = f(eccentricities, trunion axis error, horizontal collimation error, and vertical index error)$
- The systematic errors can be estimated using either:
 - Control targets
 - Planar features

Static System Calibration

• System Calibration using Control Points/Targets

* *

Contin

LiDAR Quality Control

- Quality control is a post-mission procedure to ensure/verify the quality of collected data.
- Quality control procedures can be divided into two main categories:
 - <u>External/absolute QC measures</u>: the LiDAR point cloud is compared with an independently collected surface.
 - Check point analysis
 - <u>Internal/relative QC measures</u>: the LiDAR point cloud from different flight lines is compared with each other to ensure data coherence, integrity, and correctness.

LiDAR Quality Control

- Accuracy of the system components

System Model	GPS (m) Post-Processed	IMU (deg) Post-Processed			Scan Angle	Laser Range
		Roll	Pitch	Heading	(ueg)	(cm)
ALTM 2050	0.05 - 0.3	0.008	0.008	0.015	0.009	~ 2
ALTM 3100	0.05 - 0.3	0.005	0.005	0.008	0.009	~ 2

- System Manufacturer Specification (Optech: ALTM 2050 and ALTM 3100)
 - Horizontal accuracy : 1/2000 x altitude
 - Vertical accuracy

: 1/2000 x altitude : <15 cm at 1200 m : <25 cm at 2000 m

DPRG

Quality Control using LiDAR Targets

- External/absolute quality control measures (EQC):
 - Similar to photogrammetric quality control, the derived LiDAR coordinates can be compared with independently surveyed targets.
 - Check point analysis
 - Problem: How can we correlate the non-selective LiDAR footprints to the utilized check points?
 - Solution: Use specially designed targets.
 - The target design depends on the involved LiDAR system and collected data.
 - Caution: the data collection should be carried out under normal operational circumstances.
 - Same flying height, point density, etc.

Laser Scanning

EQC: LiDAR Control Targets

Csanyi, N., Toth, C. (2004). On using LiDAR-specific ground targets. ASPRS Annual Conference, Denver, CO, May 23-28. CD-ROM.

Range Data

Intensity Data

• One should implement a segmentation procedure to derive the LiDAR coordinates of the target.

IQC: LiDAR Quality Control

- Surface reconstruction from LiDAR does not have redundancy.
 - Therefore, we do not have explicit measures in the derived surfaces to assess the quality of LiDAR-derived surfaces.
- Users should have other measures to evaluate the <u>internal</u> <u>quality</u> of the derived LiDAR surfaces (IQC).
- Alternative methodologies are based on the:
 - Coincidence of conjugate features in overlapping strips

LiDAR Internal QC

- Surface reconstruction from LiDAR does not have redundancy.
 - Therefore, we do not have explicit measures to assess the quality of LiDAR coordinates.
- **<u>Proposed Concept</u>**: Evaluate the degree of consistency among the LiDAR footprints in overlapping strips.

Strip 2

IQC: LiDAR Quality Control

- LiDAR strips are usually collected with some overlap coverage in the object space.
- A common procedure for quality control is to check the quality of coincidence of common features in overlapping strips.
- Three approaches are possible:
 - First approach: quality control using interpolated range or intensity images from overlapping strips
 - <u>Second approach</u>: quality control using extracted features from overlapping strips
 - **<u>Third approach</u>**: quality control using the original point cloud

- Derive quantitative estimate of the necessary transformation parameters (shifts & rotations) for the coalignment of the captured data from different flight lines.
 - For a well-calibrated system and with accurate navigation information, the transformation parameters should be very close to zero.

Check for the presence of biases

IQC: LiDAR Quality Control (#1)

- Using interpolated range images:
 - Interpolate LiDAR heights into a grid \rightarrow Range images
 - Image differencing of overlapping range images
 - Observed deviations in the difference image can be used as a measure of the quality of the LiDAR data.
- Caution: Interpolation would lead to artifacts in the interpolated images (especially at the vicinity of discontinuities in the range data).
 - It does not give a good indication of the quality of the planimetric coordinates of the LiDAR point cloud.

- Using Interpolated intensity images:
 - Interpolate the intensity data into a grid \rightarrow Intensity images
 - Identify distinct features in the intensity images
 - For these features, the X, Y, and Z coordinates can be derived.
 - Compare the derived coordinates of the same feature from overlapping strips
 - Theoretically, it leads to a quantification of the planimetric and vertical quality of the coordinates of the LiDAR point cloud.
- Caution: Interpolation would lead to artifacts in the interpolated images (especially at the vicinity of discontinuities in the intensity data).

Laser Scanning

75

Ayman F. Habib

DX(m)	DY(m)	DZ(m)
-0.97	0.00	1.92

DX(m)	DY(m)	DZ(m)
-0.79	0.25	0.05

DX(m)	DY(m)	DZ(m)
0.39	0.90	-0.15

DX(m)	DY(m)	DZ(m)
0.08	-0.20	-1.35

Laser Scanning

Ayman F. Habib

DX(m)	DY(m)	DZ(m)
-1.65	-1.11	0.63

DX(m)	DY(m)	DZ(m)
-0.78	0.08	-0.03

- Interpolating the LiDAR data might introduce artifacts, which will lead to unreliable quality control measures.
- Alternative procedures should be developed while relying on the original point cloud:
 - Extract features from the original LiDAR points
 - Compare conjugate features in overlapping strips
 - Deviations can be used as a quality control measure.

- The quality of the coincidence of the extracted features from overlapping strips can be used for evaluating the internal quality of the LiDAR data.
 - Quality of coincidence can be evaluated by computing the offsets between conjugate elements in the X, Y, and Z directions, respectively.
 - Alternatively, the quality of coincidence can be evaluated by estimating the absolute orientation parameters (shifts, scale, and rotations), which are necessary for ensuring the coincidence of corresponding features.
 - The deviation from the optimal parameters (zero shifts, unit scale, and zero rotation angles) can be used as the IQC measures.

manual identification of LiDAR patches with the aid of imagery

Linear Feature Extraction

$$r_i^A(biased) = r_B^A + S R_B^A r_j^B(biased) + \bar{e}_{ij}$$

Only if we are dealing with conjugate points

$$r_i^A(biased) + \vec{D} = r_B^A + S R_B^A r_j^B(biased) + \bar{e}_{ij}$$

If we are dealing with non-conjugate points

- \vec{D} represents the difference vector between non-conjugate points along conjugate linear features (pseudo-conjugate points).
- \vec{D} is aligned along the linear feature.

Least Squares Adjustment Target Function:

$$\sum \bar{e}_{ij}^T P'_{XYZ} \bar{e}_{ij} = \min(r_B^A, S, R_B^A, \vec{D})$$

- $[D_U \quad D_V \quad D_W]^T$ represents the difference vector relative to the line coordinate system.
 - Since $[D_U \quad D_V \quad D_W]^T$ represents the difference vector relative to the line coordinate system, then D_V and $D_W = 0$

 $\bar{e}_{ij} = r_i^A(biased) - r_B^A - S R_B^a r_j^B(biased) + \vec{D}$

$$\sum \bar{\boldsymbol{e}}_{ij}^T \boldsymbol{P}_{XYZ}' \bar{\boldsymbol{e}}_{ij} = \boldsymbol{min}(\boldsymbol{r}_B^A, \boldsymbol{S}, \boldsymbol{R}_B^A)$$

• Thus, utilizing the modified weight matrix would eliminate the discrepancy vector \vec{D} , which arises from the utilization of non-conjugate points along conjugate linear features – pseudo conjugate points, from the LSA target function.

	$X_{T}(m)$	$Y_{T}(m)$	$Z_{T}(m)$	S	ω (°)	φ (°)	к (°)
Optimal Para.*	0.000	0.000	0.000	1.000	0.000	0.000	0.000
Estimated	-0.418	-0.209	-0.019	1.000	-0.010	0.017	0.003

* Assuming the LiDAR data has no biases

Biases are detected

• Conceptual Basis: Check the quality of coincidence of conjugate planar patches

Conjugate Planar Features:

$$r_i^A(biased) = r_B^A + S R_B^A r_j^B(biased) + \bar{e}_{ij}$$

Only if we are dealing with conjugate points

$$r_i^A(biased) + \vec{D} = r_B^A + S R_B^A r_j^B(biased) + \bar{e}_{ij}$$

If we are dealing with non-conjugate points

- \vec{D} represents the difference vector between non-conjugate points along conjugate planar features (pseudo-conjugate points).
- \vec{D} is aligned along the planar feature.

Least Squares Adjustment Target Function:

$$\sum \bar{e}_{ij}^T P'_{XYZ} \bar{e}_{ij} = \min(r_B^A, S, R_B^A, \vec{D})$$

Re

- Overlapping strips: Conjugate patch pairs
 - Modified weight matrix is used for pseudo-conjugate points on conjugate planar patches.

• UVW is defined with the W-axis aligned along the normal to the planar feature.

$$P_{XYZ} = \Sigma_{XYZ}^{-1} \implies P_{UVW} = R_{XYZ}^{UVW} P_{XYZ} R_{UVW}^{XYZ}$$
Weight
Restriction
$$P'_{UVW} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & P_{W} \end{bmatrix} \implies P'_{XYZ} = R_{UVW}^{XYZ} P'_{UVW} R_{XYZ}^{UVW}$$
Laser Scanning
$$Ayman F. Habib$$

- $[D_U \quad D_V \quad D_W]^T$ represents the difference vector relative to the plane coordinate system.
 - Since $[D_U \quad D_V \quad D_W]^T$ represents the difference vector relative to the plane coordinate system, then $D_W = 0$

IQC: LiDAR Quality Control (#4) Least Squares Adjustment Target Function: $\sum \bar{e}_{ij}^{T} P'_{XYZ} \bar{e}_{ij} = min(r_{B}^{A}, S, R_{B}^{A}, \vec{D})$ $\bar{e}_{ij} = r_{i}^{A}(biased) - r_{B}^{A} - S R_{B}^{a} r_{j}^{B}(biased) + \vec{D}$

$$\sum \bar{\boldsymbol{e}}_{ij}^T \boldsymbol{P}_{XYZ}' \bar{\boldsymbol{e}}_{ij} = \min(\boldsymbol{r}_B^A, \boldsymbol{S}, \boldsymbol{R}_B^A)$$

• Thus, utilizing the modified weight matrix would eliminate the discrepancy vector \vec{D} , which arises from the utilization of non-conjugate points along conjugate planar features – pseudo conjugate points, from the LSA target function.

Transformation parameter	Planar-Based Approach
Scale Factor	0.9985
$X_{T}(m)$	0.75
$Y_{T}(m)$	-0.11
$Z_{T}(m)$	0.13
$\Omega\left(^{\circ} ight)$	-0.0305
$\Phi\left(^{\circ} ight)$	0.0391
K (°)	0.1950

- The first surface is represented by distinct points.
- The second surface is represented by triangular patches (TIN structure).
- The similarity transformation parameters, which minimize the normal distance between points and corresponding patches, are estimated through a least squares adjustment procedure.
- Significant deviation between the estimated parameters and the optimal values ($X_T = 0.0$, $Y_T = 0.0$, $Z_T = 0.0$, S = 1.0, $\omega = 0.0^\circ$, $\varphi = 0.0^\circ$, $\kappa = 0.0^\circ$) indicates the presence of biases in the LiDAR system.

	$X_{T}(m)$	$Y_{T}(m)$	$Z_{T}(m)$	S	ω (°)	φ (°)	к (°)
Optimal Para.*	0.000	0.000	0.000	1.000	0.000	0.000	0.000
Estimated	-0.660	-0.367	0.007	1.001	-0.017	0.002	0.003
Estimated Va		0.122					
Average N	Iormal Dist	ance		0.142 m			

* Assuming the LiDAR data has no biases

Laser Scanning

IQC: LiDAR Quality Control (#5)

Non-matches are typically along edges of buildings and around areas with vegetations

IQC: LiDAR Quality Control (#5)

IQC: LiDAR Quality Control (#5)

	One Building (1)	Three Building Areas (1,2,3)	Seven Building Areas
Scale Factor	0.9997	0.9998	0.9998
$X_{T}(m)$	0.85	0.56	0.75
$Y_{T}(m)$	-0.07	-0.26	-0.13
$Z_{T}(m)$	0.15	0.09	0.12
ω (°)	-0.0218	-0.0200	-0.0267
φ (°)	-0.0201	-0.0034	-0.0088
κ (°)	0.1239	-0.0189	-0.0003
Average Normal Distance, m	0.10	0.09	0.09

Laser Scanning

115

IQC: LiDAR Quality Control

- Checking the noise level in the point cloud: The quality of fit between conjugate entities after removing existing biases
 - Average normal distance between conjugate planar patches
 - Average normal distance between conjugate linear features
 - Average normal distance between conjugate point-patch pairs in the ICPatch

LiDAR Quality Control (IQC & EQC)

- The previous IQC measures can be used for EQC.
- In such a case, instead of comparing overlapping strips, the EQC can be evaluated by comparing the LiDAR point cloud to an independently collected surface.
- The last three QC measures (line-based, plane-based, and ICPatch approaches) will lead to more reliable estimation of the internal and external quality of the LiDAR data.
- The last QC measure (ICPatch approach) is preferred since it is based on the original/irregular LiDAR point cloud.

Experimental Results

Simulated & Real Datasets

DPRG

LiDAR QA/QC: Experimental Results (I)

- Simulated System Specifications:
 - Pulse repetition rate: 167kHz
 - Scan frequency: 100Hz
 - Scan angle range: $-22^{\circ} +22^{\circ}$
 - Position accuracy: ± 0.10 m horizontal & ± 0.15 m vertical
 - Orientation accuracy: roll and pitch: $\pm 0.01^{\circ}$ & heading: $\pm 0.016^{\circ}$
 - Lever-arm offset accuracy: $\pm 0.005m,\,\pm 0.005m,$ and $\pm 0.005m$
 - Boresight accuracy: ± 10.0 ", ± 10.0 ", and ± 10.0 "

• Simulated Strip & System Parameters:

		Strip 1	Strip 2	Strip 3	Strip 4	Strip 5	Strip 6			
Speed				21	6 km/h					
Flight head	ling	0°	180°	0°	0°	0°	180°			
(Position in Y	on in X axis) 0		0	600	-600	0	0			
Flying He	ight	1,000 m	1,000 m	2,500 m	2,500 m	2,000 m	2,000 m			
Expected Accuracy [m]										
		$\sigma_{\rm X}$	0	σγ						
		0.37	0.	33	0.21					
		Sin	nulated Syst	em Parame	eters					
$\delta\Delta X[m]$	$\delta \Delta Y[m]$	$\delta\Delta Z[m]$	$\delta \Delta ω[°]$	$\delta\Delta\phi[\circ]$	$\delta\Delta\kappa[\circ]$	δρ [m]	δS			
0.05	0.05	0.05	0.01	0.01	0.01	0.5	1.001			

Laser Scanning

• Detected Discrepancies and Calibration Results

Γ	CASE-I (1 & 2)			CASE-II (4 & 3)			CASE-III (5 & 6)		
Γ	Xt	Yt	Zt	Xt	Yt	Zt	Xt	Yt	Zt
	-0.23	0.42	0.00	-1.42	-0.20	0.23	-0.58	0.78	0.00
)C	ω°	φ°	κ°	ω°	φ°	κ°	ω°	φ°	κ°
	0.004	0.020	0.001	-0.004	0.058	-0.001	0.002	0.020	0.001
	S	$\hat{\sigma}_o$	Norm	S	$\hat{\sigma}_o$	Norm	S	$\hat{\sigma}_o$	Norm
	1.00000	0.31906	0.12117	1.000	0.57325	0.21769	1.00000	0.45300	0.17026

Simulated System Parameters

$\delta \Delta X[m]$ $\delta \Delta Y[m]$ $\delta \Delta Z[m]$ $\delta \Delta ω[°]$ $\delta \Delta φ[°]$ $\delta \Delta κ[°]$ $\delta ρ[m]$ δS				5				
	$\delta\Delta X[m]$	$\delta\Delta Y[m]$	n] $\delta\Delta Z[m]$	δ∆ω[°]	$δ\Delta φ[°]$	$\delta\Delta\kappa[\circ]$	δρ [m]	δS
0.05 0.05 0.05 0.01 0.01 0.01 0.5 0.0	0.05	0.05	0.05	0.01	0.01	0.01	0.5	0.001

	Estim	nated Syste	em Paramete	rs (Simplifie	ed Calibrati	on)	
[m]	δAV[m]	δAZ[m]	δΔω[°]	δΔω[°]	δΔκ[°]	δo [m]	8

$\delta\Delta X[m]$	$\delta \Delta Y[m]$	$\delta\Delta Z[m]$	$\delta \Delta ω[°]$	$\delta\Delta\phi[\circ]$	δΔκ[°]	δρ [m]	δS
0.050	0.040	???	0.0103	0.0100	0.0095	0.37	0.0011

Laser Scanning

QA

• Detected Discrepancies and Calibration Results

	CASE-I (1 & 2)			CASE-II (4 & 3)			CASE-III (5 & 6)		
	Xt	Yt	Zt	Xt	Yt	Zt	Xt	Yt	Zt
	-0.24	0.42	0.00	-1.47	-0.30	0.26	-0.58	0.76	0.00
C	ω°	φ°	κ°	ω°	φ°	κ°	ω°	φ°	κ°
U	0.001	0.021	0.038	0.001	0.057	0.014	-0.003	0.021	0.041
	S	$\hat{\sigma}_o$	Norm	S	$\hat{\sigma}_o$	Norm	S	$\hat{\sigma}_o$	Norm
	1.000	0.350	0.136	1.000	0.571	0.219	1.000	0.475	0.187

Simulated System Parameters

$\delta\Delta X[m]$	$\delta\Delta Y[m]$	$\delta\Delta Z[m]$	$\delta\Delta\omega[\circ]$	δΔφ[°]	$\delta\Delta\kappa[\circ]$	δρ [m]	δS
0.05	0.05	0.05	0.01	0.01	0.01	0.5	0.001

$\mathbf{\Omega}$	٨
V	A

Estimated	System	Parameters ((Sim	plified	Calib	ration)	
Lotinuted	System	1 urumeters	(Sini)	pillou	Cullo	nunonj	

<u> </u>				× 1			
$\delta\Delta X[m]$	$\delta\Delta Y[m]$	$\delta\Delta Z[m]$	δΔω[°]	δΔφ[°]	δΔκ[°]	δρ [m]	δS
0.060	0.050	???	0.0097	0.0105	0.0143	0.52	0.0011

Laser Scanning

• Detected Discrepancies and Calibration Results

	С	ASE-I (1 & 2	2)	CASE-II (4 & 3)			CASE-III (5 & 6)		
	Xt	Yt	Zt	Xt	Yt	Zt	Xt	Yt	Zt
	-0.23	0.41	-0.00	-1.54	-0.39	0.22	-0.54	0.75	-0.00
C	ω°	φ°	κ°	ω°	φ°	κ°	ω°	φ°	κ°
	0.002	0.019	0.045	-0.003	0.054	0.034	0.003	0.018	0.037
	S	$\hat{\sigma}_o$	Norm	S	$\hat{\sigma}_o$	Norm	S	$\hat{\sigma}_o$	Norm
	1.000	0.284	0.123	1.000	0.440	0.191	1.000	0.378	0.164

Simulated System Parameters

$\delta\Delta X[m]$	$\delta\Delta Y[m]$	$\delta\Delta Z[m]$	$\delta\Delta\omega[°]$	$δ \Delta φ[°]$	$\delta\Delta\kappa[\degree]$	δρ [m]	δS
0.05	0.05	0.05	0.01	0.01	0.01	0.5	0.001

Q	Estimated System Parameters (Simplified Calibration)									
	$\delta\Delta X[m]$	$\delta\Delta Y[m]$	$\delta\Delta Z[m]$	δΔω[°]	$\delta\Delta\phi[°]$	δΔκ[°]	δρ [m]	δS		
	0.047	0.050	???	0.0096	0.0094	0.0189	0.83	0.0009		

Parallel Strips

	Simulated System Parameters											
$\delta\Delta X[m]$	$\delta\Delta Y[m]$	$\delta\Delta Z[m]$	$\delta \Delta ω[°]$	$\delta\Delta\phi[\circ]$	δΔκ[°]	δρ [m]	δS					
0.05	0.05	0.05	0.01	0.01	0.01	0.5	0.001					

Simplified Approach

	Estimated System Parameters										
$\delta\Delta X[m]$	$\delta\Delta Y[m]$	$\delta\Delta Z[m]$	δ∆ω[°]	δΔφ[°]	$\delta \Delta \kappa[°]$	δρ [m]	δS				
0.050	0.040	???	0.0103	0.0100	0.0095	0.37	0.0011				

Quasi-Rigorous Approach

Estimated System Parameters											
$\delta\Delta X[m]$	$\delta\Delta Y[m]$	$\delta\Delta Z[m]$	$\delta\Delta\omega[\circ]$	$\delta\Delta\phi[\circ]$	δΔκ[°]	δρ [m]	δS				
0.050	0.040	???	0.0103	0.0100	0.0095	0.37	0.0011				

Laser Scanning

Ayman F. Habib

5° deviation from Parallelism

	Simulated System Parameters											
$\delta\Delta X[m]$	$\delta\Delta Y[m]$	$\delta\Delta Z[m]$	δ∆ω[°]	δΔφ[°]	δΔκ[°]	δρ [m]	δS					
0.05	0.05	0.05	0.01	0.01	0.01	0.5	0.001					

Simplified Approach

	Estimated System Parameters										
$\delta\Delta X[m]$	$\delta\Delta Y[m]$	$\delta\Delta Z[m]$	δΔω[°]	δΔφ[°]	$δ\Delta κ[°]$	δρ [m]	δS				
0.060	0.050	???	0.0097	0.0105	0.0143	0.52	0.0011				

Quasi-Rigorous Approach

Estimated System Parameters											
$\delta\Delta X[m]$	$\delta\Delta Y[m]$	$\delta\Delta Z[m]$	$\delta\Delta\omega[\circ]$	$\delta\Delta\phi[\circ]$	$\delta\Delta\kappa[\circ]$	δρ [m]	δS				
0.049	0.048	???	0.0101	0.0100	0.0096	0.50	0.0009				

Laser Scanning

Ayman F. Habib

15° deviation from Parallelism

	Simulated System Parameters											
$\delta\Delta X[m]$	$\delta\Delta Y[m]$	$\delta\Delta Z[m]$	$\delta \Delta ω[°]$	$\delta\Delta\phi[\circ]$	$δ\Delta κ[°]$	δρ [m]	δS					
0.05	0.05	0.05	0.01	0.01	0.01	0.5	0.001					

Simplified Approach

	Estimated System Parameters											
$\delta\Delta X[m]$	$\delta\Delta Y[m]$	$\delta\Delta Z[m]$	δΔω[°]	δΔφ[°]	δΔκ[°]	δρ [m]	δS					
0.047	0.050	???	0.0096	0.0094	0.0189	0.83	0.0009					

Quasi-Rigorous Approach

Estimated System Parameters								
$\delta\Delta X[m]$	$\delta\Delta Y[m]$	$\delta\Delta Z[m]$	$\delta\Delta\omega[\circ]$	$δ\Delta φ[°]$	$\delta\Delta\kappa[\circ]$	δρ [m]	δS	
0.049	0.049	???	0.0100	0.0100	0.0096	0.53	0.0010	

Laser Scanning

Ayman F. Habib

Comparison between true and noise/bias-contaminated coordinates

	Mean			RMSE			
	X (m)	Y (m)	Z (m)	X (m)	Y (m)	Z (m)	
	Parallel overlapping strips						
Strip3 (1,000m)	-0.065	0.216	-0.370	0.456	0.301	0.413	
Strip6 (2,000m)	-0.289	0.391	-0.303	0.828	0.555	0.393	
	Non-parallel overlapping strips (10°)						
Strip3 (1,000m)	-0.065	0.220	-0.378	0.436	0.310	0.418	
Strip6 (2,000m)	0.224	-0.414	-0.303	0.820	0.566	0.394	
	Non-parallel overlapping strips (30°)						
Strip3 (1,000m)	-0.071	0.217	-0.389	0.403	0.326	0.426	
Strip6 (2,000m)	0.275	-0.438	-0.305	0.833	0.587	0.407	
	Non-parallel (10°) and un-levelled overlapping strips(5°)						
Strip3 (1,000m)	-0.129	0.238	-0.359	0.447	0.323	0.401	
Strip6 (2,000m)	0.287	-0.419	-0.281	0.812	0.574	0.371	

Comparison between true and adjusted coordinates using the simplified reconstruction formula and estimated biases

	Mean			RMSE			
	X (m)	Y (m)	Z (m)	X (m)	Y (m)	Z (m)	
	Parallel overlapping strips						
Strip3 (1,000m)	0.011	0.006	0.005	0.247	0.207	0.163	
Strip6 (2,000m)	-0.011	-0.003	-0.009	0.477	0.384	0.195	
	Non-parallel overlapping strips (10°)						
Strip3 (1,000m)	0.006	0.003	0.006	0.247	0.207	0.163	
Strip6 (2,000m)	-0.006	-0.001	-0.008	0.475	0.384	0.195	
	Non-parallel overlapping strips (30°)						
Strip3 (1,000m)	-0.013	-0.000	0.217	0.247	0.213	0.270	
Strip6 (2,000m)	0.010	-0.012	-0.211	0.474	0.387	0.284	
	Non-parallel (10°) and un-levelled overlapping strips(5°)						
Strip3 (1,000m)	0.011	0.006	0.160	0.264	0.207	0.229	
Strip6 (2,000m)	0.017	-0.016	0.162	0.504	0.382	0.257	

Comparison between true and adjusted coordinates using the quasi-rigorous reconstruction formula and estimated biases

	Mean			RMSE			
	X (m)	Y (m)	Z (m)	X (m)	Y (m)	Z (m)	
	Parallel overlapping strips						
Strip3 (1,000m)	0.000	0.001	0.022	0.244	0.206	0.164	
Strip6 (2,000m)	-0.001	0.002	0.022	0.468	0.383	0.195	
	Un-parallel overlapping strips (10°)						
Strip3 (1,000m)	0.003	0.001	0.022	0.244	0.206	0.164	
Strip6 (2,000m)	0.009	0.007	0.022	0.466	0.384	0.195	
	Un-parallel overlapping strips (30°)						
Strip3 (1,000m)	-0.015	-0.032	0.017	0.248	0.211	0.163	
Strip6 (2,000m)	-0.000	0.005	0.022	0.463	0.385	0.191	
	Non-parallel (10°) and un-levelled overlapping strips(5°)						
Strip3 (1,000m)	0.003	-0.001	0.092	0.253	0.207	0.187	
Strip6 (2,000m)	0.007	0.013	0.101	0.487	0.385	0.221	

• Dataset Specifications

Sensor Model

Ground Point Spacing

Surveying Date

Optech 3100

~0.75m

Julian Day: 088 6 strips @1000m AGH Julian Day: 130 4 strips @1400m AGH

• System Diagnosis

	$X_{T}(m)$	$Y_{T}(m)$	$Z_{T}(m)$	Φ (°)
3-4	-0.14	0.03	-0.01	0.0061
5-4	-0.16	0.90	-0.02	0.0094
5-6	-0.09	-0.06	0.00	0.0110
7-6	-0.12	0.84	0.07	0.0071
7-8	-0.10	-0.15	0.02	0.0109

$$\begin{bmatrix} \widetilde{X}_{A}^{Biased} \\ \widetilde{Y}_{A}^{Biased} \\ \widetilde{Z}_{A}^{Biased} \end{bmatrix} = \begin{bmatrix} 2 \ \delta \Delta X - 2 \ H \ \delta \Delta \varphi \mp D / H \ \delta \rho \mp H \ \delta \theta \\ 2 \ \delta \Delta Y + 2 \ H \ \delta \Delta \omega \mp D \ \delta \Delta \kappa \\ 0 \end{bmatrix} + R_{(2\delta \Delta \varphi \pm 2\delta \theta)} \begin{bmatrix} \widetilde{X}_{B}^{Biased} \\ \widetilde{Y}_{B}^{Biased} \\ \widetilde{Z}_{B}^{Biased} \end{bmatrix} + \vec{e}_{AB}$$

System Diagnosis •

	$X_{T}(m)$	$Y_{T}(m)$	$Z_{T}(m)$	$\Phi\left(^{\circ} ight)$
3 – 5	-0.04	-0.81	0.07	-0.0030
5-7	0.04	-0.89	0.02	0.0034

$$\begin{bmatrix} \widetilde{X}_{A}^{Biased} \\ \widetilde{Y}_{A}^{Biased} \\ \widetilde{Z}_{A}^{Biased} \end{bmatrix} = \begin{bmatrix} -D/H \ \delta\rho - H \ \delta\theta \\ -D \ \delta\Delta\kappa \\ D \ \delta\Delta\varphi \end{bmatrix} + R_{2 \ \delta\theta} \begin{bmatrix} \widetilde{X}_{B}^{Biased} \\ \widetilde{Y}_{B}^{Biased} \\ \widetilde{Z}_{B}^{Biased} \end{bmatrix} + \vec{e}_{AB}$$

LiDAR QA/QC: Experimental Results (II) Strips 13027 & 13030 ullet13030 13027 Laser Scanning Ayman F. Habib 150

LiDAR QA/QC: Experimental Results (II) Strips 13029 & 13030 13029 13030 Laser Scanning Ayman F. Habib 151

• System Diagnosis

	$X_{T}(m)$	$Y_{T}(m)$	$Z_{T}(m)$	$\Phi(^{\circ})$
27-30	-0.46	-1.36	0.11	0.0471
29-30	0.37	0.32	0.01	-0.0162
29-28	-0.33	-1.28	-0.06	0.0462

$$\begin{bmatrix} \widetilde{X}_{A}^{Biased} \\ \widetilde{Y}_{A}^{Biased} \\ \widetilde{Z}_{A}^{Biased} \end{bmatrix} = \begin{bmatrix} 2 \ \delta \Delta X - 2 \ H \ \delta \Delta \varphi \mp D / H \ \delta \rho \mp H \ \delta \theta \\ 2 \ \delta \Delta Y + 2 \ H \ \delta \Delta \omega \mp D \ \delta \Delta \kappa \\ 0 \end{bmatrix} + R_{(2\delta \Delta \varphi \pm 2\delta \theta)} \begin{bmatrix} \widetilde{X}_{B}^{Biased} \\ \widetilde{Y}_{B}^{Biased} \\ \widetilde{Z}_{B}^{Biased} \end{bmatrix} + \vec{e}_{AB}$$

• System Diagnosis

aser

- The most obvious discrepancy is the one observed along the flight directions.
- There are heading and pitch boresight biases in the system calibration parameters.
- There is a smaller bias in the roll boresight parameters.
- The system parameters changed between the two flights (there was an aircraft change).

Data Description ullet

while 8	Strip Number	Flying Height	Direction
Flighting	1	2000 m	SW-NE
rightline 7	2	2000 m	NE-SW
FII9	3	1000 m	SW-NE
Flightline 5	4	1000 m	NE-SW
Flightline 0	5	1000 m	SW-NE
elight lines 1,2,3 and	6	2000 m	NE-SW
	7	1000 m	NE-SW
	8	1000 m	SW-NE

LiDAR QA/QC: Experimental Results (III) Overlap pairs: ۲ Direction **Overlapping Strips Cases** % of Overlap (ii) Strips 3&4 100% **Opposite directions** Strip 3 Strip 4 Laser Scanning Ayman F. Habib 163

LiDAR QA/QC: Experimental Results (III) Overlap pairs: \bullet **Overlapping Strips Cases** % of Overlap Direction Same direction (iii) Strips 3&5 50% Strip 3 Strip 5 Laser Scanning Ayman F. Habib 164

LiDAR QA/QC: Experimental Results (III) Overlap pairs: \bullet **Overlapping Strips Cases** % of Overlap Direction (v) Strips 5&7 50% **Opposite directions** Strip 5 Strip 7 Laser Scanning Ayman F. Habib 166

LiDAR QA/QC: Experimental Results (III) Overlap pairs: \bullet Direction **Overlapping Strips Cases** % of Overlap (vi) Strips 7&8 40% **Opposite directions** Strip 8 Strip 7 Laser Scanning Ayman F. Habib 167

LiDAR QA/QC: Experimental Results (III) Overlap pairs: ${}^{\bullet}$ **Overlapping Strips Cases** % of Overlap Direction Same direction (vii) Strips 2&6 70% Strip 6 Strip 2 Laser Scanning Ayman F. Habib 168

• ICPatch results for the overlap pairs

	X _T (m)	Y _T (m)	Z _T (m)	ω (sec)	φ (sec)	к (sec)
Strips 1&2	-0.25	1.27	-0.01	10.54	1.34	67.68
Strips 3&4	-0.01	0.52	0.02	-2.59	-9.72	20.52
Strips 3&5	-0.32	-0.19	-0.06	7.20	96.48	6.48
Strips 2&6	-0.42	0.15	0.01	-4.65	74.61	-136.10
Strips 1&6	-0.67	1.51	-0.06	4.68	91.08	71.64
Strips 5&7	-0.13	0.55	0.04	0.68	12.96	-5.40
Strips 7&8	0.48	0.82	0.06	1.62	-166.32	-2.84

• Overlap pairs used for the simplified/Quazi-Rigorous method

1 1		Case no.		Overlap	oing Cases		
		Ι		(i), (ii),			
		II		(i), (ii), (ii	i), and (vii)		
		III	(i), (ii), (iii), (i	v), (v), and	(vi)	2
Estimated	l system	paramet	ters (Sin	nplified A	Approac	h)	\sim
Case no.	$\delta\Delta X(m)$	$\delta \Delta Y(m)$	δΔω(")	δΔφ(")	δΔκ(")	δ ρ (m)	δS
Ι	-0.07	-0.11	75	-1	80	0.26	0.000565
II	-0.08	-0.11	75	-1	-39.5	0.22	0.000567
III	-0.11	-0.10	86	-16	41	0.28	0.000670
Estimated	l System	Parame	eters (Qu	azi-Rigo	orous Ap	oproach	
Configuratio Case	n $\delta \Delta X$ (m)	$\delta \Delta Y$ (m)	<i>δ</i> Δ <i>ω</i> (")	$\delta\!\Delta\phi$ (")	δΔκ (")	$\delta\! ho$ (m)	ðS
T	-0.07	-0.11	79.6	-2.6	52.5	0.59	0.00038
-							·
II	-0.0	Are these	e equiva	lent estir	nates?	0.00	0.00097

• RMSE Analysis for Equivalency Testing:

	_		Strip 1			Strip 3	
		I vs. II	I vs. III	II vs. III	I vs. II	I vs. III	II vs. III
	X (m)	0.01	0.06	-0.05	0.00	0.05	-0.04
Mean	Y (m)	0.02	0.03	-0.02	0.00	-0.00	0.00
	Z (m)	0.62	0.71	-0.09	0.60	0.69	-0.09
	X (m)	0.02	0.01	0.03	0.03	0.02	0.01
Std	Y (m)	0.13	0.12	0.00	0.01	0.00	0.01
	Z (m)	0.03	0.04	0.01	0.01	0.01	0.00
	X (m)	0.03	0.06	0.06	0.03	0.05	0.05
RMSE	Y (m)	0.13	0.13	0.02	0.01	0.00	0.01
	Z (m)	0.62	0.71	0.09	0.60	0.69	0.09

• Correlation Matrix (Configuration I):

	δΔΧ	$\delta \Delta Y$	$\delta\!\Delta\omega$	$\delta \Delta \phi$	$\delta\Delta\kappa$	δρ	δS
δΔΧ	1.000	-0.011	0.009	0.822	0.001	0.127	-0.124
$\delta \Delta Y$	-0.011	1.000	-0.945	-0.011	-0.004	-0.010	0.010
$\delta\Delta\omega$	0.009	-0.945	1.000	0.010	0.031	0.014	-0.014
$\delta \Delta \phi$	0.822	-0.011	0.010	1.000	-0.006	0.228	-0.232
$\delta\Delta\kappa$	0.001	-0.004	0.031	-0.006	1.000	-0.005	0.013
δρ	0.127	-0.010	0.014	0.228	-0.005	1.000	-0.979
δS	-0.124	0.010	-0.014	-0.232	0.013	-0.979	1.000

• Correlation Matrix (Configuration II):

	$\delta\Delta X$	$\delta \Delta Y$	$\delta\!\Delta\omega$	$\delta\Delta\phi$	$\delta\Delta\kappa$	δρ	δS
δΔΧ	1.000	-0.010	0.008	0.805	0.003	0.090	-0.099
$\delta \Delta Y$	-0.010	1.000	-0.945	-0.009	-0.006	-0.004	0.004
$\delta\Delta\omega$	0.008	-0.945	1.000	0.007	0.026	0.004	-0.005
$\delta\Delta\phi$	0.805	-0.009	0.007	1.000	-0.001	0.109	-0.134
$\delta\Delta\kappa$	0.003	-0.006	0.026	-0.001	1.000	0.024	-0.012
δρ	0.090	-0.004	0.004	0.109	0.024	1.000	-0.872
δS	-0.099	0.004	-0.005	-0.134	-0.012	-0.872	1.000

• Correlation Matrix (Configuration III):

	δΔΧ	$\delta \Delta Y$	$\delta\Delta\omega$	$\delta\Delta\phi$	$\delta\Delta\kappa$	δρ	δS
δΔΧ	1.000	-0.002	0.003	0.850	0.014	0.402	-0.441
$\delta \Delta Y$	-0.002	1.000	-0.938	-0.003	-0.156	0.005	0.000
$\delta\Delta\omega$	0.003	-0.938	1.000	0.002	0.283	0.000	-0.002
$\delta\Delta\phi$	0.850	-0.003	0.002	1.000	0.001	0.498	-0.602
$\delta\Delta\kappa$	0.014	-0.156	0.283	0.001	1.000	0.015	-0.003
δρ	0.402	0.005	0.000	0.498	0.015	1.000	-0.912
δS	-0.441	0.000	-0.002	-0.602	-0.003	-0.912	1.000

• Check the compatibility between the strips after correcting the point cloud coordinates using the estimated parameters from the different configurations

	X _T (m)	Y _T (m)	Z _T (m)	ω (sec)	φ (sec)	к (sec)
Strips 1&2	-0.25	1.27	-0.01	10.54	1.34	67.68
Strips 3&4	-0.01	0.52	0.02	-2.59	-9.72	20.52
Strips 3&5	-0.32	-0.19	-0.06	7.20	96.48	6.48
Strips 2&6	-0.42	0.15	0.01	-4.65	74.61	-136.10
Strips 1&6	-0.67	1.51	-0.06	4.68	91.08	71.64
Strips 5&7	-0.13	0.55	0.04	0.68	12.96	-5.40
Strips 7&8	0.48	0.82	0.06	1.62	-166.32	-2.84

Compatibility using the original point cloud coordinates

• Check the compatibility between the strips after correcting the point cloud coordinates using the estimated parameters from the different configurations

• Check the compatibility between the strips after correcting the point cloud coordinates using the estimated parameters from the different configurations

	Strips 3&4				Strips 3&4				Strips 3&4	
X _T (m)	Y _T (m)	Z _T (m)		X _T (m)	Y _T (m)	Z _T (m)		X _T (m)	Y _T (m)	Z _T (m)
-0.09	0.03	-0.02	N	-0.06	0.12	-0.02		-0.09	0.03	-0.02
ω(sec)	¢ (sec)	K (sec)		ω(sec)	¢ (sec)	K (sec)		ώ(sec)	¢ (sec)	K (sec)
1.80	7.92	-26.64		1.84	12.96	-26.64	Т	1.80	4.71	-26.64
	Strips 3&5				Strips 3&5				Strips 3&5	
X _T (m)	Y _T (m)	Z _T (m)		X _T (m)	Y _T (m)	Z _T (m)		X _T (m)	Y _T (m)	Z _T (m)
-0.08	0.02	0.05		-0.07	0.06	0.05		-0.08	0.09	0.05
ç (sec)	¢ (sec)	K (sec)		Q (sec)	¢ (sec)	K (sec)		ω(sec)	¢ (sec)	K (sec)
-5.70	15.12	-7.36		-5.04	71.64	5.48		-5.15	68.25	-6.54
-3.70	15.12	36		-5.04	/1.64	5.48		-5.15	00.23	

• Check the compatibility between the strips after correcting the point cloud coordinates using the estimated parameters from the different configurations

		Ι				II				III	
		Strips 5&7				Strips 5&7				Strips 5&7	
	K _T (m)	Y _T (m)	Z _T (m)		У _{.т} (m)	Y _T (m)	Z _T (m)		X7 (m)	Y _T (m)	Z _T (m)
	-0.31	-0.13	-0.03		-0.27	-0.02	-0.03		-0.31	-0.07	-0.03
	ώ(sec)	¢ (sec)	K (sec)		Ģ(sec)	¢ (sec)	K (sec)		Ģ(sec)	¢ (sec)	K (sec)
	1.62	87.84	7.56		2.63	138.24	8.64		2.25	129.01	7.58
	Strips 7&8			Y	Strips 7&8				Strips 7&8		
	X _T (m)	Y _T (m)	Z _T (m)		X _T (m)	Y _T (m)	Z _T (m)		X _T (m)	Y _T (m)	Z _T (m)
	0.220	0.210	0.050		0.200	0.160	0.050		0.23	0.28	0.05
	ω(sec)	¢ (sec)	K (sec)		ω(sec)	¢ (sec)	K (sec)		ω(sec)	¢ (sec)	K (sec)
	2.59	-45.72	-9.36	Λ	27.72	12.60	-8.64		3.21	8.41	-10.08
	Strips 2&6				Strips 2&6				Strips 2&6		
	X _T (m)	Y _T (m)	Z _T (m)		X _T (m)	Y _T (m)	Z _T (m)		X _T (m)	Y _T (m)	Z _T (m)
	-0.13	0.33	-0.340		-0.05	0.20	-0.02		-0.04	0.18	-0.01
Same level of compatibility from the different configuration											
as	ser Scanning)			179				Ayman F. Habib		

LiDAR QA/QC: Experimental Results (III) **Control Surface** Height 922 906.2 900 GPS points measured over the airport runway
Estimated calibration parameters using overlapping strips & 3D control points

Configuration Case	<i>δ</i> Δ <i>X</i> (m)	$\delta \Delta Y$ (m)	<i>δ</i> Δ <i>ω</i> (")	<i>δ</i> Δ <i>φ</i> (")	<i>δ</i> Δ <i>κ</i> (")	<i>δρ</i> (m)	ðS
Ι	-0.07	-0.12	81.15	-3.64	50.02	-0.04	0.00089
II	-0.08	-0.12	80.59	-5.20	18.82	-0.06	0.00099
III	-0.04	-0.03	67.07	-0.87	33.67	0.06	0.00099

• Correlation Matrix: 3D control surface – Configuration I

	$\delta\Delta X$	$\delta \Delta Y$	$\delta\!\Delta\omega$	$\delta\!\Delta\phi$	$\delta \Delta \kappa$	δρ	δS
$\delta\Delta X$	1.000	-0.013	0.011	0.800	0.002	0.025	-0.015
$\delta \Delta Y$	-0.013	1.000	-0.944	-0.011	-0.004	-0.002	0.001
$\delta\Delta\omega$	0.011	-0.944	1.000	0.009	0.032	0.002	-0.003
$\delta\!\Delta\phi$	0.800	-0.011	0.009	1.000	-0.005	0.041	-0.064
$\delta\Delta\kappa$	0.002	-0.004	0.032	-0.005	1.000	0.002	0.034
δρ	0.025	-0.002	0.002	0.041	0.002	1.000	-0.605
δS	-0.015	0.001	-0.003	-0.064	0.034	-0.605	1.000

• Correlation Matrix: 3D control surface – Configuration II

	δΔΧ	$\delta \Delta Y$	$\delta\!\Delta\omega$	$\delta \Delta \phi$	$\delta\Delta\kappa$	δρ	δS
$\delta\Delta X$	1.000	-0.013	0.010	0.781	0.000	0.029	-0.050
$\delta \Delta Y$	-0.013	1.000	-0.944	-0.010	-0.006	-0.001	0.001
$\delta\Delta\omega$	0.010	-0.944	1.000	0.008	0.026	0.001	-0.002
$\delta\!\Delta\phi$	0.781	-0.010	0.008	1.000	-0.004	0.034	-0.089
$\delta\Delta\kappa$	0.000	-0.006	0.026	-0.004	1.000	0.011	0.009
δρ	0.029	-0.001	0.001	0.034	0.011	1.000	<mark>-0.523</mark>
δS	-0.050	0.001	-0.002	-0.089	0.009	-0.523	1.000

• Correlation Matrix: 3D control surface – Configuration III

	δΔΧ	$\delta \Delta Y$	δΔω	$\delta \Delta \phi$	$\delta\Delta\kappa$	δρ	δS
δΔΧ	1.000	-0.007	0.007	0.805	0.011	0.161	-0.255
$\delta \Delta Y$	-0.007	1.000	-0.937	-0.010	-0.140	0.003	0.006
$\delta\Delta\omega$	0.007	-0.937	1.000	0.009	0.265	-0.001	-0.003
$\delta\!\Delta\phi$	0.805	-0.010	0.009	1.000	-0.005	0.200	-0.445
$\delta\Delta\kappa$	0.011	-0.140	0.265	-0.005	1.000	0.008	0.014
δρ	0.161	0.003	-0.001	0.200	0.008	1.000	<mark>-0.635</mark>
δS	-0.255	0.006	-0.003	-0.445	0.014	-0.635	1.000

• Estimated calibration parameters using overlapping strips & vertical control points

Configuration Case	$\delta \Delta X$ (m)	$\delta \Delta Y$ (m)	δΔ <i>ω</i> (")	<i>δ</i> Δ <i>φ</i> (")	<i>δ</i> Δ <i>κ</i> (")	$\delta ho _{(m)}$	đS
Ι	-0.07	-0.12	81.63	-3.30	51.12	0.01	0.00088
II	-0.08	-0.12	81.37	-4.87	17.42	-0.01	0.00098
III	-0.04	-0.09	84.49	-0.79	32.52	-0.01	0.00099

• Correlation Matrix: Vertical control – Configuration I

	δΔΧ	$\delta \Delta Y$	$\delta\!\Delta\omega$	$\delta \Delta \phi$	$\delta\!\Delta\kappa$	δρ	δS
$\delta\Delta X$	1.000	-0.010	0.008	0.821	0.002	0.026	-0.014
$\delta \Delta Y$	-0.010	1.000	-0.945	-0.009	-0.004	-0.002	0.002
$\delta\Delta\omega$	0.008	-0.945	1.000	0.006	0.031	0.003	-0.003
$\delta\!\Delta\phi$	0.821	-0.009	0.006	1.000	-0.005	0.043	-0.060
$\delta\Delta\kappa$	0.002	-0.004	0.031	-0.005	1.000	0.001	0.030
δρ	0.026	-0.002	0.003	0.043	0.001	1.000	<mark>-0.636</mark>
δS	-0.014	0.002	-0.003	-0.060	0.030	-0.636	1.000

• Correlation Matrix: Vertical control – Configuration II

	δΔΧ	$\delta \Delta Y$	δΔω	$\delta \Delta \phi$	$\delta\Delta\kappa$	δρ	ðS
δΔΧ	1.000	-0.010	0.007	0.803	0.001	0.032	-0.051
$\delta \Delta Y$	-0.010	1.000	-0.945	-0.008	-0.006	-0.002	0.002
$\delta\Delta\omega$	0.007	-0.945	1.000	0.006	0.026	0.001	-0.003
$\delta\Delta\phi$	0.803	-0.008	0.006	1.000	-0.004	0.037	-0.088
$\delta\Delta\kappa$	0.001	-0.006	0.026	-0.004	1.000	0.010	0.009
δρ	0.032	-0.002	0.001	0.037	0.010	1.000	-0.555
δS	-0.051	0.002	-0.003	-0.088	0.009	-0.555	1.000

• Correlation Matrix: Vertical control – Configuration III

	δΔΧ	$\delta \Delta Y$	$\delta\Delta\omega$	$\delta \Delta \phi$	δΔκ	δρ	δS
$\delta\Delta X$	1.000	-0.004	0.003	0.824	0.009	0.170	-0.259
$\delta \Delta Y$	-0.004	1.000	-0.938	-0.006	-0.157	0.002	0.006
$\delta\Delta\omega$	0.003	-0.938	1.000	0.002	0.283	0.000	-0.003
$\delta \Delta \phi$	0.824	-0.006	0.002	1.000	-0.006	0.216	-0.445
$\delta\Delta\kappa$	0.009	-0.157	0.283	-0.006	1.000	0.007	0.015
δρ	0.170	0.002	0.000	0.216	0.007	1.000	<mark>-0.664</mark>
δS	-0.259	0.006	-0.003	-0.445	0.015	-0.664	1.000

Laser Scanning

Intensity Image (Before)

Intensity Image (After)

Qualitative Evaluation

25%

75%

50%

Strip 1	
ourpi	ار بار میں ایک از بطاریک
	an an an an t he an
	Strip 3
Strip 4	
	Strip 5
	STATISTICS
1 6 18	
	Strip 6
}	ALC: NO
	Strip 2
	Co toffer
	the start as a second

Opposite directions

Opposite directions

Same direction

Strips 3&4

Strips 4&5

Strips 5&6

	Before Calibration					
	Strips 1&2					
$X_{T}(m)$	Y _T (m)	$Z_{T}(m)$				
1.10	-0.32	-0.01				
ω (deg)	φ (deg)	к (deg)				
0.0001	-0.052	-0.002				
	Strips 3&4					
$X_{T}(m)$	$Y_{T}(m)$	$Z_{T}(m)$				
0.18	0.41	-0.01				
ω (deg)	φ (deg)	к (deg)				
0.0484	-0.0005	-0.0011				

Compatibility between overlapping strips before and after the calibration procedure

Relative Accuracy (IQC) Evaluation

	Before Calibration	After Calibration
Mean ⊿X (m)	-0.36	-0.10
Mean ⊿Y(m)	0.67	0.24
Mean $\varDelta Z$ (m)	-0.05	-0.015
$\sigma_X(\mathbf{m})$	0.40	0.11
$\sigma_{Y}(\mathbf{m})$	0.29	0.06
$\sigma_Z(\mathbf{m})$	0.24	0.13
RMSE _X (m)	0.53	0.14
RMSE _Y (m)	0.72	0.24
RMSE _z (m)	0.25	0.20
RMSE _{TOTAL} (m)	0.93	0.35

RMSE analysis of the photogrammetric check points using extracted control planar features from the LiDAR data before and after the calibration procedure

Absolute Accuracy (EQC) Evaluation

Laser Scanning

Dataset Description

Platform attitude variation

Flight line	ω (º) min/max	φ(°) min/max
1	-3.0 / 4.2	6.4 / 9.1
2	-9.4 / -3.0	-4.0 / 1.6
4	6.8 / 8.7	0.6 / 1.4
5	0.0 / 7.5	4.7 / 10.7
6	-11.4 / -3.0	0.4 / 5.0
7	-4.2 / 8.8	-12.9 / -7.4
9	-9.9 / -2.2	1.6 / 23.2

Dataset Description

LiDAR QA/QC: Experimental Results (V)								
	Strip pai	rs]	Flying Direction				
	Rigorou	Rigorous		29; 2&4; 5&6; 5&7	7			
	Quasi-rigor	Quasi-rigorous		29; 2&4; 5&6; 5&7	7			
	Simplified			1&9; 2&4; 5&7				
Strip pairs	Flying Direction	% Overlap		Average Lateral Distance D (m)	Average Flying Height H (m)			
1&9	approx. parallel	75		66	130			
2&4	approx. opposite	70		160	130			
5&6	cross	-		-	230			
5&7	approx. opposite	75		10	230			
Laser Scanning			204		Avman F Hahih			

Method	δΔω(°)	$\delta\Delta\phi(^{o})$	δΔκ(°)	S/δS		
Simplified	0.039	0.092	-0.029	-0.00028204		
Quasi-rigorous	0.038	0.093	-0.044	-0.00000514		
Rigorous	-0.094	0.032	90.064	1.00017		

Please, note that the estimated parameters are not compatible since different coordinate systems definition are utilized in the two calibration approaches.

Before Calibration		After Calibration									
		Rigorous		Qu	Quasi-Rigorous		Simplified				
1&9											
$X_{T}'(m)$	Y _T '(m)	$Z_{T}'(m)$	X _T '(m)	Y _T '(m)	$Z_{T}'(m)$	$X_{T}'(m)$	Y _T '(m)	$Z_{T}'(m)$	$X_{T}'(m)$	Y _T '(m)	$Z_{T}'(m)$
0.00	-0.21	-0.07	0.01	-0.01	0.01	0.03	-0.11	0.01	0.04	-0.13	0.00
Ω'(°)	Φ'()	K'(°)	Ω'(°)	Φ'()	K'(°)	Ω'(⁰)	Φ'(°)	K'(°)	Ω'(°)	Φ'()	K'(°)
-0.0177	0.0169	0.0432	0.0178	0.0114	0.0178	0.0178	0.0178	0.0147	0.0128	0.0098	0.0155
2&4											
$X_{T}'(m)$	Y _T '(m)	$Z_{T}'(m)$	X _T '(m)	Y _T '(m)	$Z_{T}'(m)$	X _T '(m)	Y _T '(m)	$Z_{T}'(m)$	X _T '(m)	Y _T '(m)	$Z_{T}'(m)$
-0.53	0.19	0.06	-0.06	-0.02	0.00	-0.11	-0.11	0.00	-0.11	0.13	0.01
Ω'(°)	Φ'()	K'(º)	Ω'(°)	Φ'()	K'(º)	Ω'(⁰)	Φ'(°)	K'(º)	Ω'(°)	Φ'()	K'(°)
-0.0217	0.1505	0.0009	-0.0241	-0.0109	-0.0077	-0.0245	-0.0073	0.0032	0.0113	0.0275	0.0031
5&6											
$X_{T}(m)$	Y _T (m)	$Z_{T}(m)$	$X_{T}(m)$	$Y_{T}(m)$	$Z_{T}(m)$	$X_{T}(m)$	$Y_{T}(m)$	$Z_{T}(m)$	$X_{T}(m)$	$Y_{T}(m)$	$Z_{T}(m)$
0.33	-0.46	0.01	0.00	-0.02	0.02	0.02	-0.02	0.02	0.02	-0.02	0.02
Ω(°)	Φ()	K (°)	Ω()	Φ()	K (°)	Ω(°)	Φ()	K (°)	Ω()	Φ()	K (°)
-0.0626	-0.1021	-0.0083	0.0013	0.0070	0.0017	-0.0021	0.0001	0.0007	-0.0049	-0.0014	-0.0026
5&7											
$X_{T}'(m)$	Y _T '(m)	Z _T '(m)	X _T '(m)	Y _T '(m)	Z _T '(m)	X _T '(m)	Y _T '(m)	$Z_{T}'(m)$	$X_{T}'(m)$	Y _T '(m)	$Z_{T}'(m)$
-0.68	0.36	0.10	-0.02	0.00	0.03	0.04	0.05	0.01	0.04	0.05	0.01
Ω'(°)	Φ'()	K'(°)	Ω'(°)	Φ'()	K'(°)	Ω'(°)	Φ'()	K'(°)	Ω'(°)	Φ'()	K'(°)
-0.0311	0.1847	0.0032	-0.0069	-0.0102	0.0231	-0.0292	-0.0008	0.0209	-0.0288	0.0014	0.0196

Concluding Remarks

- QA/QC of LiDAR mapping is not as mature as those for photogrammetric mapping.
 - There are several challenges when compared with photogrammetric mapping.
- Challenges with QA/QC of LiDAR mapping:
 - Raw measurements might not be always available.
 - Sophisticated procedures are needed to relate the LiDAR data to distinct points (e.g., GCPs).
 - LiDAR-derived coordinates is not based on an adjustment procedure.
 - Quality control measures, which are typically used in photogrammetry, are not applicable.

Concluding Remarks

- Alternative procedures are needed to check for systematic biases and evaluate the noise level in the point cloud.
- LiDAR system calibration is possible by identifying the nature of discrepancies between overlapping strips.
 - Models that can be conducted in the absence of the system's raw measurements
 - Models that can be conducted in the absence of control information
- Quality control of LiDAR data can be conducted by the end user.
- Standards and procedures are needed for QA/QC activities.

Concluding Remarks

- Quality Assurance and Quality Control should not be viewed as two independent processes.
 - The potential of using the outcome from the quality control to improve the system parameters
- The QC should evaluate the following:
 - The consistency of derived surfaces from overlapping strips (precision)
 - The consistency of the derived surface and ground truth (accuracy)
 - Point density and its utilization in subsequent data processing
 - Quality of derived products (e.g., DTM generation, classification & segmentation outcome)