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Chapters 1 – 3: Overview
• Photogrammetric mapping: introduction, applications, and 

tools
• GNSS/INS-assisted geo-referencing of photogrammetric 

and LiDAR mapping systems
• LiDAR mapping: principles, applications, mathematical 

model, and error sources and their impact.

• This chapter will be focusing on the Quality Assurance 
(QA) and Quality Control (QC) of the LiDAR Mapping 
process:
– QA: system calibration
– QC: LiDAR data validation
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QUALITY ASSURANCE AND 
QUALITY CONTROL OF 
LIDAR MAPPING

Chapter 4
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Overview
• Motivation
• Quality Assurance (QA) and Quality Control (QC) 

– Introduction
– Prerequisites

• QA/QC of Photogrammetric Mapping
• QA/QC of LiDAR Mapping:

– LiDAR system calibration
– Geometric validation of LiDAR data

• Concluding Remarks



Laser Scanning Ayman F. Habib4

Motivation
• There has been a significant advancement in the remote 

sensing and mapping technology.
– Digital cameras provide an alternative to conventional large 

format analogue cameras for rapid data collection.
– Direct georeferencing is providing the means for an almost 

control-free mapping environment.
– LiDAR provides a dense point cloud representing the object 

space surface, and thus offers a fast and accurate way of 
obtaining a Digital Surface Model (DSM).

• Effective utilization of these advances mandates the 
development of reliable, practical, and standardized 
procedures for the Quality Assurance (QA) and Quality 
Control (QC) of the mapping process.
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Quality Assurance & Quality Control
• Quality Assurance (pre-mission): 

– Management activities to ensure that a process, item, or service 
will be of the quality needed by the user

– It deals with creating management controls that cover planning, 
implementation, and review of data collection.

– Key activity in QA is the calibration procedure.
• Quality Control (post-mission):

– Provide routines and consistent checks to ensure available data 
integrity, correctness, and completeness

– Check whether the desired quality has been achieved



Laser Scanning Ayman F. Habib6

Quality Assurance & Quality Control
• To develop effective QA/QC procedures, we need to 

understand the mechanism of the mapping process 
including:
– Data acquisition systems,
– Error sources (random and systematic),
– How to mitigate the impact of these error sources,
– Nature of available data, 
– Data processing algorithms, and
– Nature of delivered product.
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Quality Assurance & Quality Control
• The presented approach in this chapter/course has been 

designed to provide:
– QA/QC for emerging mapping systems
– QC measures for every step of the mapping process (e.g., 

sensor/system calibration, stability analysis, position/orientation 
determination, extracted features, delivered product)

– A set of expected problems, procedures for the detection of 
instances of such problems, and approaches to fixing problems 
whenever detected

• QC is not only concerned with accepting or rejecting a product
– A closed loop QA/QC process
– Minimal control requirements for the QA/QC process
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Photogrammetric & LiDAR Mapping 
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Photogrammetric Mapping
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Photogrammetric Quality Assurance
• Photogrammetric quality assurance include:

– Percentage of overlap
– Percentage of side lap
– Flying height
– Base-height ratio
– Number and distribution of tie points
– Number and distribution of ground control points
– Scanning resolution (analog images)
– Georeferencing procedure
– Camera calibration
– System calibration
– Stability analysis of the system calibration parameters
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Photogrammetric Quality Assurance
• One of the key issues in quality assurance of data 

acquisition systems is the calibration process.
• Camera calibration:

– Laboratory calibration,
– Indoor calibration, and
– In-situ calibration

• Total system calibration:
– Camera calibration (IOPs)
– Spatial and rotational offsets between various system 

components (e.g., camera, GNSS, and INS)
– Time offsets (synchronization)

• Stability analysis:
– Ensure that the estimated parameters do not significantly change
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Photogrammetric Quality Assurance

Laboratory Calibration: Multi-Collimators



Laser Scanning Ayman F. Habib13

Photogrammetric Quality Assurance

Indoor Camera Calibration
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Photogrammetric Quality Assurance

In-Situ Camera Calibration
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Photogrammetric Quality Assurance
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Photogrammetric Quality Control
• Photogrammetric reconstruction is based on redundant 

measurements.
• Results from the photogrammetric triangulation gives quantitative 

measures of the precision of the reconstruction outcome.
– A posteriori variance factor/variance component (overall measure of the 

quality of fit between the observed quantities and estimated unknowns as 
defined by the used model)

– Variance-covariance matrix for the derived object coordinates
– These values can be compared with expected nominal values.

• Independent measure for accuracy verification can be established 
using check point analysis.
– Photogrammetric coordinates are compared with independently measured 

coordinates (e.g., GNSS survey)  RMSE analysis.
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Photogrammetric Quality Control

Check Point Analysis
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LiDAR Mapping
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Accuracy

Range

Pulse Based Phase Based Triangulation Based

1mm 0.01mm

100m 10m 1m

Konica Minolta, 
http://www.konicaminolta.com/instruments/products/
3d/index.html, (accessed October 7, 2009)

Trimble, http://www.trimble.com/trimblegx.shtml, 
(accessed March 16, 2010)

Leica Geosystems, http://hds.leica-
geosystems.com/en/index.htm, (accessed October 7, 2009)

Hybrid Type Panoramic Type Camera Type

Operational LiDAR Systems (Terrestrial)
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Source: seaice.acecrc.au

Airborne Laser Scanning Static Terrestrial Laser Scanning

Source:www.cage.curtain.edy.au

Kinematic Terrestrial Laser Scanning

Source:www.optech.ca/lynx.htm

LiDAR Mapping
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LiDAR Data 
Applications

Heritage 
Documentation

Source: www.nytimes.com

Transportation 
Planning

Source: www.isgs.uiuc.edu

Power Line  
Mapping

Source: www.merrick.com

Flood Plain 
Mapping

Source: www.maritimejournal.com

3D City 
Modeling 

Source: www.trimble.com

Collected point clouds should undergo QC and data processing 

techniques to extract useful information for these applications.

LiDAR Mapping
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LiDAR Quality Assurance
• QA activities/measures include:

– Optimum mission time
– Distance to GNSS base station 
– Flying height
– Pulse repetition rate
– Beam divergence angle
– Scan angle
– Percentage of overlap
– System calibration
– Stability analysis

Laser scanner
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LiDAR QA: System Calibration
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LiDAR QA: System Calibration
• The calibration of a LiDAR system aims at the estimation

of systematic errors, which describe the deviation from
the assumed theoretical model.
– One can assume that the derived point cloud after system

calibration are only contaminated by random errors.
• Usually accomplished in several steps:

– Laboratory calibration,
– Platform calibration, and
– In-flight calibration
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• Laboratory Calibration (conducted by 
the system manufacturer)
– Calibration of individual system 

components,
– Mirror to IMU misalignment, 
– Mirror to IMU lever arm, and
– Mirror to reference point

• Platform Calibration
– Reference point to GNSS antenna

Usually refined during the in-flight calibration

LiDAR QA: System Calibration

GNSS Antenna
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LiDAR QA: System Calibration
• In-Flight Calibration:

– Utilizes a calibration test field composed of control surfaces for
the estimation of biases and systematic errors in the LiDAR
system parameters.

– The observed discrepancies between the LiDAR and control
surfaces are used to determine the biases and systematic errors
in the system parameters (e.g., boresight roll and pitch angles
and scale parameters).
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LiDAR QA: System Calibration
• Target Function: minimize the 

normal distance between the 
laser point footprint and a known 
(control) surface.

• Use the LiDAR equation to 
estimate the error parameters that 
minimize the cost of the target 
function.

• Caution: flight and control 
surface configurations should be 
carefully established.

laser point

firing point

d

Only possible if we are dealing with a transparent 
system
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LiDAR QA: System Calibration
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LiDAR QA: System Calibration

• Target function: determine the system parameters  that minimize 
the determinant values for the given control patches.

• Challenges: 

• How can we acquire control surfaces?

• LiDAR raw measurements                                        are 
needed (not always available).
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LiDAR QA: System Calibration
• The ground control surface can be generated from a well-

calibrated and well-georeferenced photogrammetric 
system.
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LiDAR QA: System Calibration
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LiDAR QA: System Calibration
• Status of current calibration methods:

– There is lack of a commonly accepted calibration methodology. 
– System raw measurements are required.
– Estimated parameters are limited.
– Manual and empirical approaches are utilized.
– Calibration sites with control targets are required.

• For example, buildings and runways
– Calibration is not possible for end-users using point cloud 

coordinates in overlapping strips.
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LiDAR QA: System Calibration
• Conceptual Basis: Estimate the system parameters that 

minimize discrepancies between derived surfaces from 
multiple flight lines while reducing ground control 
requirements

• This process requires establishing the optimal flight 
configuration that maximizes the impact of biases in the system 
parameters.
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φδΔ

Opposite directions with 100% overlap ratio
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LiDAR QA: System Calibration
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LiDAR QA: System Calibration
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LiDAR QA: System Calibration
Optimum Flight Configuration
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LiDAR QA: System Calibration 
• Several LiDAR system calibration techniques can be 

introduced according to the nature of available data.
–Simplified Calibration: With some constraints on the flight 

configuration and ground coverage, we can conduct the calibration 
using only the point cloud coordinates.

–Quasi-Rigorous Calibration: Using the trajectory data and time-
tagged point cloud coordinates, we can estimate the system 
parameters with fewer constraints on the flight configuration.

–Rigorous Calibration: With the availability of raw measurements, 
the calibration can be conducted without any assumptions regarding 
the flight configuration and ground coverage. 
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Overlapping strips

Discrepancies

3D Transformation

Rotation
Shifts

Calibration Parameters

• LiDAR Data in Overlapping Parallel Strips
 Point cloud coordinates
 Raw measurements are not necessarily available

Simplified Calibration

LiDAR QA: System Calibration
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• LiDAR Data in Overlapping Parallel Strips
 Point cloud coordinates
 Raw measurements are not necessarily available

Simplified Calibration

• Assumptions:
o Linear scanner,
o Vertical scanner,
o Parallel flight lines,
o Terrain-height variations are minimal compared to 

the flying height, and
o Small biases in the boresight angles

• Can handle any type of terrain coverage
• Cannot handle control points 

LiDAR QA: System Calibration
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Quasi-Rigorous Calibration
• LiDAR Data in Overlapping Strips

 Point cloud coordinates with the time tag
 Time-tagged trajectory

LiDAR QA: System Calibration
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Quasi-Rigorous Calibration
• LiDAR Data in Overlapping Strips

 Point cloud coordinates with the time tag
 Time-tagged trajectory

• Assumptions:
o Vertical scanner,
o Small biases in the boresight angles

• Can handle parallel & cross strips
• Can handle any type of terrain coverage
• Can handle control points 

LiDAR QA: System Calibration
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Rigorous Calibration
• LiDAR Data in Overlapping Strips

 Point cloud coordinates together with the system raw 
measurements (position and the attitude of each 
pulse as well as the measured scan angles and ranges)

LiDAR QA: System Calibration
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Rigorous Calibration
• LiDAR Data in Overlapping Strips

 Point cloud coordinates together with the system raw 
measurements (position and the attitude of each 
pulse as well as the measured scan angles and ranges)

• Assumptions:
o None

• Can handle parallel & cross strips
• Can handle any type of terrain coverage
• Can handle control points 

LiDAR QA: System Calibration
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Static System Calibration
• Sensor modelling is a pre-requisite to the system 

calibration process.
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Static System Calibration

Point cloud• Observations: 
• Horizontal circle reading (θ)
• Vertical circle reading (α)
• Range (ρ) 
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Horizontal 
Encoder Circle

Vertical 
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Vertical Axis

Horizontal or 
Trunnion Axis
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Instrument 
horizontal

Angular origin of elevation 
angle measurements

Origin of range 
measurements

Angular origin of horizontal 
direction measurements

θ

ρ

Rotational motions

α

Ideal scanner model

Static System Calibration
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Static System Calibration
• Assumptions for the Ideal Scanner Model: 

– Trunnion, vertical, and collimation axes intersect at a single 
point (laser beam firing point).

– Trunnion, vertical, and collimation axes are orthogonal to each 
other.

Horizontal 
Encoder Circle

Vertical 
Encoder Circle

Vertical Axis

Horizontal or 
Trunnion Axis

Collimation Axis

Instrument 
horizontal

Angular origin of elevation 
angle measurements

Origin of range 
measurements

Angular origin of horizontal 
direction measurements

θ

ρ

Rotational motions

α
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• Deviations from the Ideal Scanner Model (1):
• Trunnion-Vertical axes eccentricity (evh ) 
• Vertical-Collimation axes eccentricity (evz )
• Trunnion-Collimation axes eccentricity (ehz)

Static System Calibration
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Static System Calibration
• Deviations from the Ideal Scanner Model (2):

• Range error: Additive and scale errors 
• Trunnion axis error: Non-orthogonality of the trunnion and 

vertical axes
• Horizontal collimator error: Non-orthogonality of the trunnion

and collimator axes
• Vertical index error: Constant error in the vertical angle 

reading
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Static System Calibration
• Functional Model for System Calibration

ூ௟௨ ௟௕௟௨ ఘ

• The systematic errors can be estimated using either:
‒ Control targets
‒ Planar features
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Static System Calibration
• System Calibration using Control Points/Targets

• Objective: Minimize the differences 
between the TLS derived coordinates and 
independently measured coordinates of 
the targets
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Static System Calibration
• System Calibration using Planar Features

• Objective: Minimize the differences between the TLS 
derived coordinates and a planar surface 
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LiDAR Quality Control
• Quality control is a post-mission procedure to 

ensure/verify the quality of collected data.
• Quality control procedures can be divided into two main 

categories:
– External/absolute QC measures: the LiDAR point cloud is 

compared with an independently collected surface.
• Check point analysis

– Internal/relative QC measures: the LiDAR point cloud from 
different flight lines is compared with each other to ensure data 
coherence, integrity, and correctness.  
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System Model GPS (m)
Post-Processed

IMU (deg)
Post-Processed Scan Angle

(deg)
Laser Range

(cm)
Roll Pitch Heading

ALTM 2050 0.05 – 0.3 0.008 0.008 0.015 0.009 ~ 2
ALTM 3100 0.05 – 0.3 0.005 0.005 0.008 0.009 ~ 2

- System Manufacturer Specification (Optech: ALTM 2050 and ALTM 3100)

- Horizontal accuracy : 1/2000 x altitude
- Vertical accuracy : <15 cm at 1200 m

: <25 cm at 2000 m

- Accuracy of the system components

LiDAR Quality Control
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Quality Control using LiDAR Targets
• External/absolute quality control measures (EQC):

– Similar to photogrammetric quality control, the derived LiDAR 
coordinates can be compared with independently surveyed 
targets.

• Check point analysis
– Problem: How can we correlate the non-selective LiDAR 

footprints to the utilized check points?
– Solution: Use specially designed targets.

• The target design depends on the involved LiDAR system and collected 
data.

– Caution: the data collection should be carried out under normal 
operational circumstances.

• Same flying height, point density, etc.
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EQC: LiDAR Control Targets

Csanyi, N., Toth, C. (2004). On using LiDAR-specific ground targets. ASPRS Annual Conference, 
Denver, CO, May 23-28. CD-ROM.
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EQC: LiDAR Control Targets

Csanyi, N., Toth, C. (2004). On using LiDAR-specific ground targets. ASPRS Annual Conference, 
Denver, CO, May 23-28. CD-ROM.
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EQC: LiDAR Control Targets

Csanyi, N., Toth, C. (2004). On using LiDAR-specific ground targets. ASPRS Annual Conference, 
Denver, CO, May 23-28. CD-ROM.
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EQC: LiDAR Control Targets

Range Data Intensity Data
• One should implement a segmentation procedure to 

derive the LiDAR coordinates of the target.

Csanyi, N., Toth, C. (2004). On using LiDAR-specific ground targets. ASPRS Annual 
Conference, Denver, CO, May 23-28. CD-ROM.
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IQC: LiDAR Quality Control
• Surface reconstruction from LiDAR does not have 

redundancy.
– Therefore, we do not have explicit measures in the derived 

surfaces to assess the quality of LiDAR-derived surfaces.
• Users should have other measures to evaluate the internal 

quality of the derived LiDAR surfaces (IQC).
• Alternative methodologies are based on the:

– Coincidence of conjugate features in overlapping strips
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LiDAR Internal QC
• Surface reconstruction from LiDAR does not have 

redundancy.
– Therefore, we do not have explicit measures to assess the quality 

of LiDAR coordinates.
• Proposed Concept: Evaluate the degree of consistency 

among the LiDAR footprints in overlapping strips.

Strip 2 Strip 3 Strip 4
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IQC: LiDAR Quality Control
• LiDAR strips are usually collected with some overlap 

coverage in the object space.
• A common procedure for quality control is to check the 

quality of coincidence of common features in overlapping 
strips.

• Three approaches are possible:
– First approach: quality control using interpolated range or 

intensity images from overlapping strips
– Second approach: quality control using extracted features from 

overlapping strips
– Third approach: quality control using the original point cloud
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IQC: LiDAR Quality Control

Overlapping strips with common features
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IQC: LiDAR Quality Control

First Strip
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IQC: LiDAR Quality Control

Second Strip
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LiDAR Internal QC
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Check for the presence of biases

•Derive quantitative estimate of the necessary 
transformation parameters (shifts & rotations) for the co-
alignment of the captured data from different flight lines.

• For a well-calibrated system and with accurate navigation 
information, the transformation parameters should be very close 
to zero.

LiDAR Internal QC
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IQC: LiDAR Quality Control (#1)
• Using interpolated range images:

– Interpolate LiDAR heights into a grid  Range images
– Image differencing of overlapping range images
– Observed deviations in the difference image can be used as a 

measure of the quality of the LiDAR data.
• Caution: Interpolation would lead to artifacts in the 

interpolated images (especially at the vicinity of 
discontinuities in the range data).
– It does not give a good indication of the quality of the 

planimetric coordinates of the LiDAR point cloud. 
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IQC: LiDAR Quality Control (#1)

First Range Image
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IQC: LiDAR Quality Control (#1)

Second Range Image
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IQC: LiDAR Quality Control (#1)

Difference Image
Introduced by the interpolation procedure
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IQC: LiDAR Quality Control (#2)
• Using Interpolated intensity images:

– Interpolate the intensity data into a grid  Intensity images
– Identify distinct features in the intensity images

• For these features, the X, Y, and Z coordinates can be derived.
– Compare the derived coordinates of the same feature from 

overlapping strips
– Theoretically, it leads to a quantification of the planimetric and 

vertical quality of the coordinates of the LiDAR point cloud.
• Caution: Interpolation would lead to artifacts in the 

interpolated images (especially at the vicinity of 
discontinuities in the intensity data).
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IQC: LiDAR Quality Control (#2)

Intensity Images
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IQC: LiDAR Quality Control (#2)
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IQC: LiDAR Quality Control (#2)

DX(m) DY(m) DZ(m)

-0.97 0.00 1.92

DX(m) DY(m) DZ(m)

-0.79 0.25 0.05
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IQC: LiDAR Quality Control (#2)

DX(m) DY(m) DZ(m)

0.39 0.90 -0.15

DX(m) DY(m) DZ(m)

0.08 -0.20 -1.35



Laser Scanning Ayman F. Habib78

IQC: LiDAR Quality Control (#2)

DX(m) DY(m) DZ(m)

-1.65 -1.11 0.63

DX(m) DY(m) DZ(m)

-0.78 0.08 -0.03
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IQC: LiDAR Quality Control (# 1, 2)
• Interpolating the LiDAR data might introduce artifacts, 

which will lead to unreliable quality control measures.
• Alternative procedures should be developed while relying 

on the original point cloud:
– Extract features from the original LiDAR points
– Compare conjugate features in overlapping strips
– Deviations can be used as a quality control measure.



Laser Scanning Ayman F. Habib80

IQC: LiDAR Quality Control (#3)
• The quality of the coincidence of the extracted features 

from overlapping strips can be used for evaluating the 
internal quality of the LiDAR data.
– Quality of coincidence can be evaluated by computing the 

offsets between conjugate elements in the X, Y, and Z 
directions, respectively.

– Alternatively, the quality of coincidence can be evaluated by 
estimating the absolute orientation parameters (shifts, scale, and 
rotations), which are necessary for ensuring the coincidence of 
corresponding features.

• The deviation from the optimal parameters (zero shifts, unit scale, and 
zero rotation angles) can be used as the IQC measures. 
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IQC: LiDAR Quality Control (#3)

Linear Feature Extraction

manual identification of LiDAR 
patches with the aid of imagery
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IQC: LiDAR Quality Control (#3)
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IQC: LiDAR Quality Control (#3)
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Segmented PatchesExtracted LinesMatched Lines

IQC: LiDAR Quality Control (#3)
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Matching Procedure

θ

2n

thresholdratio Overlap >
1n

IQC: LiDAR Quality Control (#3)

ion) verificatdist. (normal  threshold , 21 ≤nn

Conjugate Linear Features: 𝑙௔ 𝑙௕

𝜃 ൌ 𝐶𝑂𝑆ିଵ ௟⃗ೌ⨀௟್⃗௟⃗ೌ ௟್⃗ ൑ threshold (parallelism verification)
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Expanded Error Elipse
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Line – Strip A Corresponding Line – Strip B

X

Y

Z

Points i and j

Non-conjugate points

IQC: LiDAR Quality Control (#3)

Variance Expansion (Weight Restriction)

Conjugate Linear Features:

Only valid if we are dealing with conjugate points

𝑟௜஺ 𝑟௝஻

𝑟௜஺ሺ𝑏𝑖𝑎𝑠𝑒𝑑ሻ ൌ  𝑟஻஺ ൅ 𝑆 𝑅஻஺ 𝑟௝஻ሺ𝑏𝑖𝑎𝑠𝑒𝑑ሻ ൅ 𝑒௜௝
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Conjugate Linear Features:

Only if we are dealing with conjugate points

If we are dealing with non-conjugate points• 𝐷 represents the difference vector between non-conjugate points along 
conjugate linear features (pseudo-conjugate points).• 𝐷 is aligned along the linear feature.

IQC: LiDAR Quality Control (#3)

𝑟௜஺ሺ𝑏𝑖𝑎𝑠𝑒𝑑ሻ ൌ  𝑟஻஺ ൅ 𝑆 𝑅஻஺ 𝑟௝஻ሺ𝑏𝑖𝑎𝑠𝑒𝑑ሻ ൅ 𝑒௜௝
𝑟௜஺ 𝑏𝑖𝑎𝑠𝑒𝑑 ൅ 𝐷 ൌ  𝑟஻஺ ൅ 𝑆 𝑅஻஺ 𝑟௝஻ሺ𝑏𝑖𝑎𝑠𝑒𝑑ሻ ൅ 𝑒௜௝

Least Squares Adjustment Target Function:෍ 𝑒௜௝்𝑃௑௒௓ᇱ 𝑒௜௝ ൌ min ሺ𝑟஻஺, 𝑆, 𝑅஻஺, 𝐷ሻ
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Weight Restriction
U

W
V

X

Y

Z

Weight 
Restriction

IQC: LiDAR Quality Control (#3)

Conjugate Linear Features:

• UVW is defined with the U-axis aligned along the line.

𝑅௑௒௓௎௏ௐ 𝑈𝑉𝑊 ൌ 𝑅௑௒௓௎௏ௐ 𝑋𝑌𝑍 Σ௑௒௓ ൌ 𝜎௑ଶ 𝜎௑௒ 𝜎௑௓𝜎௒௑ 𝜎௒ଶ 𝜎௒௓𝜎௓௑ 𝜎௓௒ 𝜎௓ଶ
𝑃௑௒௓ ൌ Σ௑௒௓ିଵ 𝑃௎௏ௐ ൌ 𝑅௑௒௓௎௏ௐ 𝑃௑௒௓𝑅௎௏ௐ௑௒௓

𝑃௎௏ௐᇱ ൌ 0 0 00 𝑃௏ 𝑃௏ௐ0 𝑃ௐௐ 𝑃ௐ 𝑃௑௒௓ᇱ ൌ 𝑅௎௏ௐ௑௒௓ 𝑃௎௏ௐᇱ 𝑅௑௒௓௎௏ௐ
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• 𝐷௎ 𝐷௏ 𝐷ௐ ்represents the difference vector relative to the line coordinate system. 

• Since 𝐷௎ 𝐷௏ 𝐷ௐ ் represents the difference vector relative to the line coordinate 
system, then 𝐷௏ and 𝐷ௐ = 0

IQC: LiDAR Quality Control (#3)
Least Squares Adjustment Target Function:෍ 𝑒௜௝்𝑃௑௒௓ᇱ 𝑒௜௝ ൌ 𝑚𝑖𝑛 ሺ𝑟஻஺, 𝑆, 𝑅஻஺, 𝐷ሻ𝑒௜௝ ൌ 𝑟௜஺ 𝑏𝑖𝑎𝑠𝑒𝑑 െ 𝑟஻஺ െ 𝑆 𝑅஻௔ 𝑟௝஻ሺ𝑏𝑖𝑎𝑠𝑒𝑑ሻ ൅ 𝐷

𝑃௑௒௓ᇱ 𝐷 ൌ 𝑅௎௏ௐ௑௒௓ 𝑃௎௏ௐᇱ 𝑅௑௒௓௎௏ௐ 𝐷௑𝐷௒𝐷௓ ൌ 𝑅௎௏ௐ௑௒௓ 𝑃௎௏ௐᇱ 𝐷௎𝐷௏𝐷ௐ𝑃௑௒௓ᇱ 𝐷 ൌ 𝑅௎௏ௐ௑௒௓ 0 0 00 𝑃௏ 𝑃௏ௐ0 𝑃ௐௐ 𝑃ௐ
𝐷௎00 ൌ 0
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•Thus, utilizing the modified weight matrix would 
eliminate the discrepancy vector , which arises 
from the utilization of non-conjugate points along 
conjugate linear features – pseudo conjugate 
points, from the LSA target function.

IQC: LiDAR Quality Control (#3)
Least Squares Adjustment Target Function:෍ 𝑒௜௝்𝑃௑௒௓ᇱ 𝑒௜௝ ൌ 𝑚𝑖𝑛 ሺ𝑟஻஺, 𝑆, 𝑅஻஺, 𝐷ሻ𝑒௜௝ ൌ 𝑟௜஺ 𝑏𝑖𝑎𝑠𝑒𝑑 െ 𝑟஻஺ െ 𝑆 𝑅஻௔ 𝑟௝஻ሺ𝑏𝑖𝑎𝑠𝑒𝑑ሻ ൅ 𝐷

෍ 𝒆ത𝒊𝒋𝑻 𝑷𝑿𝒀𝒁ᇱ 𝒆ത𝒊𝒋 ൌ 𝒎𝒊𝒏 ሺ𝒓𝑩𝑨, 𝑺, 𝑹𝑩𝑨ሻ
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IQC: LiDAR Quality Control (#3)
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IQC: LiDAR Quality Control (#3)

XT (m) YT (m) ZT (m) S ω (°) φ (°) κ (°)

Optimal Para.* 0.000 0.000 0.000 1.000 0.000 0.000 0.000

Estimated -0.418 -0.209 -0.019 1.000 -0.010 0.017 0.003

* Assuming the LiDAR data has no biases

Biases are detected
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IQC: LiDAR Quality Control (#3)
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IQC: LiDAR Quality Control (#3)
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IQC: LiDAR Quality Control (#4)

• Conceptual Basis: Check the quality of coincidence of 
conjugate planar patches
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IQC: LiDAR Quality Control (#4)
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IQC: LiDAR Quality Control (#4)

ROI* selection

Data extraction in 
overlapping Strips

Segmentation

Patch matching

* Region of Interest

Strip A Strip B

• Overlapping strips: Conjugate patch pairs
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Strip A

Strip B

IQC: LiDAR Quality Control (#4)
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IQC: LiDAR Quality Control (#4)

Matching Procedure

Planar Patch in Strip A Planar Patch in Strip B

• Overlapping strips: Conjugate patch pairs

ሺ𝑋௖, 𝑌௖, 𝑍௖ሻ஺ 𝑋௖, 𝑌௖, 𝑍௖: 𝑃𝑎𝑡𝑐ℎ 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑁஺ & 𝑁஻: Surface Normal
𝑁஺ 𝑁஻

ሺ𝑋௖, 𝑌௖, 𝑍௖ሻ஻
𝜃 ൌ 𝐶𝑂𝑆ିଵ 𝑁஺⨀𝑁஻𝑁஺ 𝑁஻ ൑ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝛥𝐷 ൌ Δ𝑋௖ଶ ൅ Δ𝑌௖ଶ ൅ Δ𝑍௖ଶ ൑ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
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• Overlapping strips: Conjugate patch pairs
– Modified weight matrix is used for pseudo-conjugate points 

on conjugate planar patches.

Weight Restriction

One equation for each pseudo-conjugate points

IQC: LiDAR Quality Control (#4)

𝑟௜஺ሺ𝑏𝑖𝑎𝑠𝑒𝑑ሻ ൌ  𝑟஻஺ ൅ 𝑆 𝑅஻஺ 𝑟௝஻ሺ𝑏𝑖𝑎𝑠𝑒𝑑ሻ ൅ 𝑒௜௝
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Conjugate Planar Features:

Only if we are dealing with conjugate points

If we are dealing with non-conjugate points• 𝐷 represents the difference vector between non-conjugate points along 
conjugate planar features (pseudo-conjugate points).• 𝐷 is aligned along the planar feature.

IQC: LiDAR Quality Control (#4)

𝑟௜஺ሺ𝑏𝑖𝑎𝑠𝑒𝑑ሻ ൌ  𝑟஻஺ ൅ 𝑆 𝑅஻஺ 𝑟௝஻ሺ𝑏𝑖𝑎𝑠𝑒𝑑ሻ ൅ 𝑒௜௝
𝑟௜஺ 𝑏𝑖𝑎𝑠𝑒𝑑 ൅ 𝐷 ൌ  𝑟஻஺ ൅ 𝑆 𝑅஻஺ 𝑟௝஻ሺ𝑏𝑖𝑎𝑠𝑒𝑑ሻ ൅ 𝑒௜௝

Least Squares Adjustment Target Function:෍ 𝑒௜௝்𝑃௑௒௓ᇱ 𝑒௜௝ ൌ min ሺ𝑟஻஺, 𝑆, 𝑅஻஺, 𝐷ሻ
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IQC: LiDAR Quality Control (#4)

U

V

W

X

Y

Z

• Overlapping strips: Conjugate patch pairs
– Modified weight matrix is used for pseudo-conjugate points 

on conjugate planar patches.

Weight 
Restriction

𝑈𝑉𝑊 ൌ 𝑅௑௒௓௎௏ௐ 𝑋𝑌𝑍 Σ௑௒௓ ൌ 𝜎௑ଶ 𝜎௑௒ 𝜎௑௓𝜎௒௑ 𝜎௒ଶ 𝜎௒௓𝜎௓௑ 𝜎௓௒ 𝜎௓ଶ
𝑃௑௒௓ ൌ Σ௑௒௓ିଵ 𝑃௎௏ௐ ൌ 𝑅௑௒௓௎௏ௐ 𝑃௑௒௓𝑅௎௏ௐ௑௒௓

𝑃௎௏ௐᇱ ൌ 0 0 00 0 00 0 𝑃ௐ 𝑃௑௒௓ᇱ ൌ 𝑅௎௏ௐ௑௒௓ 𝑃௎௏ௐᇱ 𝑅௑௒௓௎௏ௐ

𝑅௑௒௓௎௏ௐ
• UVW is defined with the W-axis aligned along the normal to the planar feature.
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• 𝐷௎ 𝐷௏ 𝐷ௐ ்represents the difference vector relative to the plane coordinate system. 

• Since 𝐷௎ 𝐷௏ 𝐷ௐ ் represents the difference vector relative to the plane 
coordinate system, then 𝐷ௐ = 0

IQC: LiDAR Quality Control (#4)
Least Squares Adjustment Target Function:෍ 𝑒௜௝்𝑃௑௒௓ᇱ 𝑒௜௝ ൌ 𝑚𝑖𝑛 ሺ𝑟஻஺, 𝑆, 𝑅஻஺, 𝐷ሻ𝑒௜௝ ൌ 𝑟௜஺ 𝑏𝑖𝑎𝑠𝑒𝑑 െ 𝑟஻஺ െ 𝑆 𝑅஻௔ 𝑟௝஻ሺ𝑏𝑖𝑎𝑠𝑒𝑑ሻ ൅ 𝐷

𝑃௑௒௓ᇱ 𝐷 ൌ 𝑅௎௏ௐ௑௒௓ 𝑃௎௏ௐᇱ 𝑅௑௒௓௎௏ௐ 𝐷௑𝐷௒𝐷௓ ൌ 𝑅௎௏ௐ௑௒௓ 𝑃௎௏ௐᇱ 𝐷௎𝐷௏𝐷ௐ𝑃௑௒௓ᇱ 𝐷 ൌ 𝑅௎௏ௐ௑௒௓ 0 0 00 0 00 0 𝑃ௐ
𝐷௎𝐷௏0 ൌ 0
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•Thus, utilizing the modified weight matrix would 
eliminate the discrepancy vector , which arises 
from the utilization of non-conjugate points along 
conjugate planar features – pseudo conjugate 
points, from the LSA target function.

IQC: LiDAR Quality Control (#4)
Least Squares Adjustment Target Function:෍ 𝑒௜௝்𝑃௑௒௓ᇱ 𝑒௜௝ ൌ 𝑚𝑖𝑛 ሺ𝑟஻஺, 𝑆, 𝑅஻஺, 𝐷ሻ𝑒௜௝ ൌ 𝑟௜஺ 𝑏𝑖𝑎𝑠𝑒𝑑 െ 𝑟஻஺ െ 𝑆 𝑅஻௔ 𝑟௝஻ሺ𝑏𝑖𝑎𝑠𝑒𝑑ሻ ൅ 𝐷

෍ 𝒆ത𝒊𝒋𝑻 𝑷𝑿𝒀𝒁ᇱ 𝒆ത𝒊𝒋 ൌ 𝒎𝒊𝒏 ሺ𝒓𝑩𝑨, 𝑺, 𝑹𝑩𝑨ሻ
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IQC: LiDAR Quality Control (#4)

Transformation parameter Planar-Based Approach

Scale Factor 0.9985

XT (m) 0.75

YT (m) -0.11

ZT (m) 0.13

Ω (°) -0.0305

Φ (°) 0.0391

Κ (°) 0.1950
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IQC: LiDAR Quality Control (#5)
• The first surface is represented by distinct points.
• The second surface is represented by triangular patches (TIN 

structure).
• The similarity transformation parameters, which minimize the 

normal distance between points and corresponding patches, are 
estimated through a least squares adjustment procedure.

• Significant deviation between the estimated parameters and the 
optimal values (XT = 0.0, YT = 0.0, ZT = 0.0, S = 1.0, ω = 0.0°, φ = 
0.0°, κ = 0.0°) indicates the presence of biases in the LiDAR 
system.

Normal 
Distance
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IQC: LiDAR Quality Control (#5)

Point/Patch Pairs: Closest Patch Procedure

We will have conjugate point-patch pairs only whenever the TIN patches 
represent the physical surface.

Non-matches

Conditions:
• Closest patch (within a 

threshold)
• Point located within the 

patch
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IQC: LiDAR Quality Control (#5)

Conditions:
• Closest patch
• Point located within the 

patch
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XT, YT, ZT, S,  Ω, 
Φ,Κ

( , , , , , , )T T TX Y Z S ω φ κ

Point/Patch Pairs: Closest Patch Procedure
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IQC: LiDAR Quality Control (#5)

XT (m) YT (m) ZT (m) S ω (°) φ (°) κ (°)
Optimal Para.* 0.000 0.000 0.000 1.000 0.000 0.000 0.000

Estimated -0.660 -0.367 0.007 1.001 -0.017 0.002 0.003
Estimated Variance Component 0.122

Average Normal Distance 0.142 m

Surface 1: 44,156 points Surface 2: 45,520 patches

Register

* Assuming the LiDAR data has no biases
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IQC: LiDAR Quality Control (#5)

Green: Reference Surface
Blue: Matches
Red: Non-matches
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IQC: LiDAR Quality Control (#5)

Non-matches are typically along 
edges of buildings and around 

areas with vegetations
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IQC: LiDAR Quality Control (#5)

1

2
34 56

7

1

2
3
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56

7

Strip # 3 Strip # 4
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IQC: LiDAR Quality Control (#5)
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IQC: LiDAR Quality Control (#5)
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IQC: LiDAR Quality Control (#5)

One Building 
(1)

Three Building Areas 
(1,2,3)

Seven Building 
Areas

Scale Factor 0.9997 0.9998 0.9998
XT (m) 0.85 0.56 0.75
YT (m) -0.07 -0.26 -0.13
ZT (m) 0.15 0.09 0.12
ω (°) -0.0218 -0.0200 -0.0267
ϕ (°) -0.0201 -0.0034 -0.0088
κ (°) 0.1239 -0.0189 -0.0003

Average Normal 
Distance, m

0.10 0.09 0.09
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IQC: LiDAR Quality Control

Check for the presence of biases



Laser Scanning Ayman F. Habib117

IQC: LiDAR Quality Control

Check the noise level in the point cloud after bias removal
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IQC: LiDAR Quality Control
• Checking the noise level in the point cloud: The quality of 

fit between conjugate entities after removing existing 
biases
– Average normal distance between conjugate planar patches
– Average normal distance between conjugate linear features
– Average normal distance between conjugate point-patch pairs in 

the ICPatch



Laser Scanning Ayman F. Habib119

LiDAR Quality Control (IQC & EQC)
• The previous IQC measures can be used for EQC.
• In such a case, instead of comparing overlapping strips, 

the EQC can be evaluated by comparing the LiDAR point 
cloud to an independently collected surface.

• The last three QC measures (line-based, plane-based, and 
ICPatch approaches) will lead to more reliable estimation 
of the internal and external quality of the LiDAR data.

• The last QC measure (ICPatch approach) is preferred 
since it is based on the original/irregular LiDAR point 
cloud.
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LiDAR QA/QC: Closed-Loop Approach

Overlapping strips

Discrepancies

3D Transformation

Rotation

Shifts
Calibration Parameters

•LiDAR Data in Overlapping Parallel Strips
 Point cloud coordinates
 Raw measurements are not necessarily available

QC Procedure
QA Procedure
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Experimental Results

Simulated & Real Datasets
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LiDAR QA/QC: Experimental Results (I)
• Simulated System Specifications:

– Pulse repetition rate: 167kHz
– Scan frequency: 100Hz
– Scan angle range: -22° – +22°
– Position accuracy: ±0.10m  horizontal & ±0.15m vertical
– Orientation accuracy: roll and pitch: ±0.01° & heading: 
±0.016°

– Lever-arm offset accuracy:±0.005m, ±0.005m, and±0.005m
– Boresight accuracy:±10.0'', ± 10.0'', and± 10.0''
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LiDAR QA/QC: Experimental Results (I)
• Simulated Flight Path and Surface
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LiDAR QA/QC: Experimental Results (I)
• Simulated Flight Path and Surface
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LiDAR QA/QC: Experimental Results (I)

Strip 1 Strip 2 Strip 3 Strip 4 Strip 5 Strip 6
Speed 216 km/h

Flight heading 0° 180° 0° 0° 0° 180°
(Position in X axis) 0 0 600 -600 0 0

Flying Height 1,000 m 1,000 m 2,500 m 2,500 m 2,000 m 2,000 m

Simulated System Parameters
δΔX[m] δΔY[m] δΔZ[m] δΔω[°] δΔφ[°] δΔκ[°] δρ [m] δS

0.05 0.05 0.05 0.01 0.01 0.01 0.5 1.001

Expected Accuracy [m]
σX σY σZ

0.37 0.33 0.21

• Simulated Strip & System Parameters:
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• Detected Discrepancies and Calibration Results

LiDAR QA/QC: Experimental Results (I)

CASE-I (1 & 2) CASE-II (4 & 3) CASE-III (5 & 6)

Xt Yt Zt Xt Yt Zt Xt Yt Zt

-0.23 0.42 0.00 -1.42 -0.20 0.23 -0.58 0.78 0.00

ω° φ° κ° ω° φ° κ° ω° φ° κ°

0.004 0.020 0.001 -0.004 0.058 -0.001 0.002 0.020 0.001

S 𝜎ො௢ Norm S 𝜎ො௢ Norm S 𝜎ො௢ Norm

1.00000 0.31906 0.12117 1.000 0.57325 0.21769 1.00000 0.45300 0.17026

1,5

2,6

43

Simulated System Parameters
δΔX[m] δΔY[m] δΔZ[m] δΔω[°] δΔφ[°] δΔκ[°] δρ [m] δS

0.05 0.05 0.05 0.01 0.01 0.01 0.5 0.001

Estimated System Parameters (Simplified Calibration)
δΔX[m] δΔY[m] δΔZ[m] δΔω[°] δΔφ[°] δΔκ[°] δρ [m] δS 

0.050 0.040 ??? 0.0103 0.0100 0.0095 0.37 0.0011

QC

QA
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LiDAR QA/QC: Experimental Results (I)

Strip 1 Strip 2 Strip 3 Strip 4 Strip 5 Strip 6
Speed 216 km/h

Flight heading 5° 175° 5° -5° 5° 175°
(Position in X axis) 0 0 600 -600 0 0

Flying Height 1,000 m 1,000 m 2,500 m 2,500 m 2,000 m 2,000 m

• Simulated Flight Path & Surface:
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• Detected Discrepancies and Calibration Results

LiDAR QA/QC: Experimental Results (I)

CASE-I (1 & 2) CASE-II (4 & 3) CASE-III (5 & 6)

Xt Yt Zt Xt Yt Zt Xt Yt Zt

-0.24 0.42 0.00 -1.47 -0.30 0.26 -0.58 0.76 0.00

ω° φ° κ° ω° φ° κ° ω° φ° κ°

0.001 0.021 0.038 0.001 0.057 0.014 -0.003 0.021 0.041

S 𝜎ො௢ Norm S 𝜎ො௢ Norm S 𝜎ො௢ Norm

1.000 0.350 0.136 1.000 0.571 0.219 1.000 0.475 0.187

1,5

2,6

43

Simulated System Parameters
δΔX[m] δΔY[m] δΔZ[m] δΔω[°] δΔφ[°] δΔκ[°] δρ [m] δS

0.05 0.05 0.05 0.01 0.01 0.01 0.5 0.001

Estimated System Parameters (Simplified Calibration)
δΔX[m] δΔY[m] δΔZ[m] δΔω[°] δΔφ[°] δΔκ[°] δρ [m] δS

0.060 0.050 ??? 0.0097 0.0105 0.0143 0.52 0.0011

QC

QA
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LiDAR QA/QC: Experimental Results (I)

Strip 1 Strip 2 Strip 3 Strip 4 Strip 5 Strip 6
Speed 216 km/h

Flight heading 15° 165° 15° -15° 15° 165°
(Position in X axis) 0 0 600 -600 0 0

Flying Height 1,000 m 1,000 m 2,500 m 2,500 m 2,000 m 2,000 m

• Simulated Flight Path & Surface:
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• Detected Discrepancies and Calibration Results 1,5

2,6

43

LiDAR QA/QC: Experimental Results (I)

CASE-I (1 & 2) CASE-II (4 & 3) CASE-III (5 & 6)

Xt Yt Zt Xt Yt Zt Xt Yt Zt

-0.23 0.41 -0.00 -1.54 -0.39 0.22 -0.54 0.75 -0.00

ω° φ° κ° ω° φ° κ° ω° φ° κ°

0.002 0.019 0.045 -0.003 0.054 0.034 0.003 0.018 0.037

S 𝜎ො௢ Norm S 𝜎ො௢ Norm S 𝜎ො௢ Norm

1.000 0.284 0.123 1.000 0.440 0.191 1.000 0.378 0.164

Simulated System Parameters
δΔX[m] δΔY[m] δΔZ[m] δΔω[°] δΔφ[°] δΔκ[°] δρ [m] δS

0.05 0.05 0.05 0.01 0.01 0.01 0.5 0.001

Estimated System Parameters (Simplified Calibration)
δΔX[m] δΔY[m] δΔZ[m] δΔω[°] δΔφ[°] δΔκ[°] δρ [m] δS

0.047 0.050 ??? 0.0096 0.0094 0.0189 0.83 0.0009

QC

QA
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LiDAR QA/QC: Experimental Results (I)

Simulated System Parameters
δΔX[m] δΔY[m] δΔZ[m] δΔω[°] δΔφ[°] δΔκ[°] δρ [m] δS

0.05 0.05 0.05 0.01 0.01 0.01 0.5 0.001

Estimated System Parameters
δΔX[m] δΔY[m] δΔZ[m] δΔω[°] δΔφ[°] δΔκ[°] δρ [m] δS 

0.050 0.040 ??? 0.0103 0.0100 0.0095 0.37 0.0011

Parallel Strips

Estimated System Parameters
δΔX[m] δΔY[m] δΔZ[m] δΔω[°] δΔφ[°] δΔκ[°] δρ [m] δS 

0.050 0.040 ??? 0.0103 0.0100 0.0095 0.37 0.0011

Simplified Approach

Quasi-Rigorous Approach
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LiDAR QA/QC: Experimental Results (I)

Simulated System Parameters
δΔX[m] δΔY[m] δΔZ[m] δΔω[°] δΔφ[°] δΔκ[°] δρ [m] δS

0.05 0.05 0.05 0.01 0.01 0.01 0.5 0.001

Estimated System Parameters
δΔX[m] δΔY[m] δΔZ[m] δΔω[°] δΔφ[°] δΔκ[°] δρ [m] δS 

0.049 0.048 ??? 0.0101 0.0100 0.0096 0.50 0.0009

5o deviation from Parallelism

Estimated System Parameters
δΔX[m] δΔY[m] δΔZ[m] δΔω[°] δΔφ[°] δΔκ[°] δρ [m] δS

0.060 0.050 ??? 0.0097 0.0105 0.0143 0.52 0.0011

Simplified Approach

Quasi-Rigorous Approach
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LiDAR QA/QC: Experimental Results (I)

Simulated System Parameters
δΔX[m] δΔY[m] δΔZ[m] δΔω[°] δΔφ[°] δΔκ[°] δρ [m] δS

0.05 0.05 0.05 0.01 0.01 0.01 0.5 0.001

Estimated System Parameters
δΔX[m] δΔY[m] δΔZ[m] δΔω[°] δΔφ[°] δΔκ[°] δρ [m] δS 

0.049 0.049 ??? 0.0100 0.0100 0.0096 0.53 0.0010

15o deviation from Parallelism

Estimated System Parameters
δΔX[m] δΔY[m] δΔZ[m] δΔω[°] δΔφ[°] δΔκ[°] δρ [m] δS

0.047 0.050 ??? 0.0096 0.0094 0.0189 0.83 0.0009

Simplified Approach

Quasi-Rigorous Approach
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LiDAR QA/QC: Experimental Results (I)

Case 1:

Case 2:

Case 3:

Case 4:

Heading                   Roll         Pitch
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LiDAR QA/QC: Experimental Results (I)

Mean RMSE

X (m) Y (m) Z (m) X (m) Y (m) Z (m)

Parallel overlapping strips

Strip3 (1,000m) -0.065 0.216 -0.370 0.456 0.301 0.413

Strip6 (2,000m) -0.289 0.391 -0.303 0.828 0.555 0.393

Non-parallel overlapping strips (10° )

Strip3 (1,000m) -0.065 0.220 -0.378 0.436 0.310 0.418

Strip6 (2,000m) 0.224 -0.414 -0.303 0.820 0.566 0.394

Non-parallel overlapping strips (30° )

Strip3 (1,000m) -0.071 0.217 -0.389 0.403 0.326 0.426

Strip6 (2,000m) 0.275 -0.438 -0.305 0.833 0.587 0.407

Non-parallel (10° ) and un-levelled overlapping strips(5°)

Strip3 (1,000m) -0.129 0.238 -0.359 0.447 0.323 0.401

Strip6 (2,000m) 0.287 -0.419 -0.281 0.812 0.574 0.371

Comparison between true and noise/bias-contaminated coordinates
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LiDAR QA/QC: Experimental Results (I)

Mean RMSE

X (m) Y (m) Z (m) X (m) Y (m) Z (m)

Parallel overlapping strips

Strip3 (1,000m) 0.011 0.006 0.005 0.247 0.207 0.163

Strip6 (2,000m) -0.011 -0.003 -0.009 0.477 0.384 0.195

Non-parallel overlapping strips (10° )

Strip3 (1,000m) 0.006 0.003 0.006 0.247 0.207 0.163

Strip6 (2,000m) -0.006 -0.001 -0.008 0.475 0.384 0.195

Non-parallel overlapping strips (30° )

Strip3 (1,000m) -0.013 -0.000 0.217 0.247 0.213 0.270

Strip6 (2,000m) 0.010 -0.012 -0.211 0.474 0.387 0.284

Non-parallel (10° ) and un-levelled overlapping strips(5°)

Strip3 (1,000m) 0.011 0.006 0.160 0.264 0.207 0.229

Strip6 (2,000m) 0.017 -0.016 0.162 0.504 0.382 0.257

Comparison between true and adjusted coordinates 
using the simplified reconstruction formula and estimated biases
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Mean RMSE

X (m) Y (m) Z (m) X (m) Y (m) Z (m)

Parallel overlapping strips

Strip3 (1,000m) 0.000 0.001 0.022 0.244 0.206 0.164

Strip6 (2,000m) -0.001 0.002 0.022 0.468 0.383 0.195

Un-parallel overlapping strips (10° )

Strip3 (1,000m) 0.003 0.001 0.022 0.244 0.206 0.164

Strip6 (2,000m) 0.009 0.007 0.022 0.466 0.384 0.195

Un-parallel overlapping strips (30° )

Strip3 (1,000m) -0.015 -0.032 0.017 0.248 0.211 0.163

Strip6 (2,000m) -0.000 0.005 0.022 0.463 0.385 0.191

Non-parallel (10° ) and un-levelled overlapping strips(5°)

Strip3 (1,000m) 0.003 -0.001 0.092 0.253 0.207 0.187

Strip6 (2,000m) 0.007 0.013 0.101 0.487 0.385 0.221

Comparison between true and adjusted coordinates 
using the quasi-rigorous reconstruction formula and estimated biases

LiDAR QA/QC: Experimental Results (I)
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LiDAR QA/QC: Experimental Results (II) 
• Dataset Specifications

Sensor Model Optech 3100

Ground Point Spacing ~0.75m

Surveying Date Julian Day: 088
6 strips @1000m AGH

Julian Day: 130
4 strips @1400m AGH
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Strip 08806

LiDAR QA/QC: Experimental Results (II)
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LiDAR QA/QC: Experimental Results (II)
• Strips 08803 & 08804
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LiDAR QA/QC: Experimental Results (II)
• Strips 08804 & 08805
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LiDAR QA/QC: Experimental Results (II)
• Strips 08805 & 08806
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LiDAR QA/QC: Experimental Results (II)
• Strips 08806 & 08807
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LiDAR QA/QC: Experimental Results (II)
• Strips 08807 & 08808
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LiDAR QA/QC: Experimental Results (II)
• Strips 08803 & 08805
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LiDAR QA/QC: Experimental Results (II)
• Strips 08805 & 08807
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LiDAR QA/QC: Experimental Results (II)
• System Diagnosis

XT (m) YT (m) ZT (m) Φ (°)
3 – 4 -0.14 0.03 -0.01 0.0061
5 – 4 -0.16 0.90 -0.02 0.0094
5 – 6 -0.09 -0.06 0.00 0.0110
7 – 6 -0.12 0.84 0.07 0.0071
7 – 8 -0.10 -0.15 0.02 0.0109
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LiDAR QA/QC: Experimental Results (II)
• System Diagnosis

XT (m) YT (m) ZT (m) Φ (°)
3 – 5 -0.04 -0.81 0.07 -0.0030
5 – 7 0.04 -0.89 0.02 0.0034
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LiDAR QA/QC: Experimental Results (II)
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LiDAR QA/QC: Experimental Results (II)
• Strips 13027 & 13030

13027

13030
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13029

13030

LiDAR QA/QC: Experimental Results (II)
• Strips 13029 & 13030
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13029

13028

LiDAR QA/QC: Experimental Results (II)
• Strips 13029 & 13028



Laser Scanning Ayman F. Habib153

XT (m) YT (m) ZT (m) Φ (°)
27 – 30 -0.46 -1.36 0.11 0.0471
29 – 30 0.37 0.32 0.01 -0.0162
29 – 28 -0.33 -1.28 -0.06 0.0462
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LiDAR QA/QC: Experimental Results (II)
• System Diagnosis
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LiDAR QA/QC: Experimental Results (II)
• System Diagnosis

– The most obvious discrepancy is the one observed along the 
flight directions.

– There are heading and pitch boresight biases in the system 
calibration parameters.

– There is a smaller bias in the roll boresight parameters.

– The system parameters changed between the two flights (there 
was an aircraft change).
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LiDAR QA/QC: Experimental Results (II)
• System Diagnosis

Individual impact of 
boresighting pitch 
and heading errors

Accumulated impact 
of these errors 

Incompatibility between 
strips  8803 & 8804 
removed by adjusting the 
bore-sighting  pitch angle 

8803

8804

8805 8803

8804

8805 8803

8804

8805
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LiDAR QA/QC: Experimental Results (II)
• Investigated Profiles
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LiDAR QA/QC: Experimental Results (II)
• Profile: AA'

1m

1m
Before

After
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LiDAR QA/QC: Experimental Results (II)
• Profile BB'

1m

1m
Before

After
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LiDAR QA/QC: Experimental Results (II)
• Profile CC'

1m

1m
Before

After
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LiDAR QA/QC: Experimental Results (II)
• Profile DD'

1m

1m
Before

After
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Strip 
Number

Flying 
Height Direction

1 2000 m SW-NE
2 2000 m NE-SW
3 1000 m SW-NE
4 1000 m NE-SW
5 1000 m SW-NE
6 2000 m NE-SW
7 1000 m NE-SW
8 1000 m SW-NE

LiDAR QA/QC: Experimental Results (III)
• Data Description
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LiDAR QA/QC: Experimental Results (III)
• Overlap pairs: 

Overlapping Strips Cases % of Overlap Direction
(i) Strips 1&2 100% Opposite directions
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LiDAR QA/QC: Experimental Results (III)
• Overlap pairs: 

Overlapping Strips Cases % of Overlap Direction
(ii) Strips 3&4 100% Opposite directions
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LiDAR QA/QC: Experimental Results (III)
• Overlap pairs: 

Overlapping Strips Cases % of Overlap Direction
(iii) Strips 3&5 50% Same direction
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LiDAR QA/QC: Experimental Results (III)
• Overlap pairs: 

Overlapping Strips Cases % of Overlap Direction
(iv) Strips 1&6 70% Opposite directions
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LiDAR QA/QC: Experimental Results (III)
• Overlap pairs: 

Overlapping Strips Cases % of Overlap Direction
(v) Strips 5&7 50% Opposite directions
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LiDAR QA/QC: Experimental Results (III)
• Overlap pairs: 

Overlapping Strips Cases % of Overlap Direction
(vi) Strips 7&8 40% Opposite directions
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LiDAR QA/QC: Experimental Results (III)
• Overlap pairs: 

Overlapping Strips Cases % of Overlap Direction
(vii) Strips 2&6 70% Same direction
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LiDAR QA/QC: Experimental Results (III)
• ICPatch results for the overlap pairs

XT (m) YT (m) ZT (m) ω (sec) ϕ (sec) κ (sec)

Strips 1&2 -0.25 1.27 -0.01 10.54 1.34 67.68

Strips 3&4 -0.01 0.52 0.02 -2.59 -9.72 20.52

Strips 3&5 -0.32 -0.19 -0.06 7.20 96.48 6.48

Strips 2&6 -0.42 0.15 0.01 -4.65 74.61 -136.10

Strips 1&6 -0.67 1.51 -0.06 4.68 91.08 71.64

Strips 5&7 -0.13 0.55 0.04 0.68 12.96 -5.40

Strips 7&8 0.48 0.82 0.06 1.62 -166.32 -2.84
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LiDAR QA/QC: Experimental Results (III)
• Overlap pairs used for the simplified/Quazi-Rigorous method

• Estimated system parameters (Simplified Approach)

• Estimated System Parameters (Quazi-Rigorous Approach)

Case no. Overlapping Cases  
I (i), (ii), and (iii)
II (i), (ii), (iii), and (vii)
III (i), (ii), (iii), (iv), (v), and (vi)

Case no. δΔX(m) δΔY(m) δΔω(") δΔφ(") δΔκ(") δρ(m) δS
I -0.07 -0.11 75 -1 80 0.26 0.000565
II -0.08 -0.11 75 -1 -39.5 0.22 0.000567
III -0.11 -0.10 86 -16 41 0.28 0.000670

?

Are these equivalent estimates?
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LiDAR QA/QC: Experimental Results (III)
• RMSE Analysis for Equivalency Testing:
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LiDAR QA/QC: Experimental Results (III)
• RMSE Analysis for Equivalency Testing:
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LiDAR QA/QC: Experimental Results (III)
• Correlation Matrix (Configuration I):
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LiDAR QA/QC: Experimental Results (III)
• Correlation Matrix (Configuration II):
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LiDAR QA/QC: Experimental Results (III)
• Correlation Matrix (Configuration III):
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LiDAR QA/QC: Experimental Results (III)
• Check the compatibility between the strips after 

correcting the point cloud coordinates using the estimated 
parameters from the different configurations

XT (m) YT (m) ZT (m) ω (sec) ϕ (sec) κ (sec)

Strips 1&2 -0.25 1.27 -0.01 10.54 1.34 67.68

Strips 3&4 -0.01 0.52 0.02 -2.59 -9.72 20.52

Strips 3&5 -0.32 -0.19 -0.06 7.20 96.48 6.48

Strips 2&6 -0.42 0.15 0.01 -4.65 74.61 -136.10

Strips 1&6 -0.67 1.51 -0.06 4.68 91.08 71.64

Strips 5&7 -0.13 0.55 0.04 0.68 12.96 -5.40

Strips 7&8 0.48 0.82 0.06 1.62 -166.32 -2.84

Compatibility using the original point cloud coordinates
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LiDAR QA/QC: Experimental Results (III)
• Check the compatibility between the strips after 

correcting the point cloud coordinates using the estimated 
parameters from the different configurations

I II III

Same level of compatibility from the different configurations
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LiDAR QA/QC: Experimental Results (III)
• Check the compatibility between the strips after 

correcting the point cloud coordinates using the estimated 
parameters from the different configurations

I II III

Same level of compatibility from the different configurations
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LiDAR QA/QC: Experimental Results (III)
• Check the compatibility between the strips after 

correcting the point cloud coordinates using the estimated 
parameters from the different configurations

I II III

Same level of compatibility from the different configurations
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LiDAR QA/QC: Experimental Results (III)
• Control Surface

900 GPS points measured over the airport runway 
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LiDAR QA/QC: Experimental Results (III)
• Estimated calibration parameters using overlapping strips 

& 3D control points √
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LiDAR QA/QC: Experimental Results (III)
• Correlation Matrix: 3D control surface – Configuration I
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LiDAR QA/QC: Experimental Results (III)
• Correlation Matrix: 3D control surface – Configuration II
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LiDAR QA/QC: Experimental Results (III)
• Correlation Matrix: 3D control surface – Configuration III
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LiDAR QA/QC: Experimental Results (III)
• Estimated calibration parameters using overlapping strips 

& vertical control points √
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LiDAR QA/QC: Experimental Results (III)
• Correlation Matrix: Vertical control – Configuration I
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LiDAR QA/QC: Experimental Results (III)
• Correlation Matrix: Vertical control – Configuration II
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LiDAR QA/QC: Experimental Results (III)
• Correlation Matrix: Vertical control – Configuration III
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LiDAR QA/QC: Experimental Results (III)
• Quantitative evaluation

Discrepancies before and after applying the calibration parameters 
Configuration I 
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LiDAR QA/QC: Experimental Results (III)
• Quantitative evaluation

Discrepancies before and after applying the calibration parameters 
Configuration I 
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Intensity Image (Before) Intensity Image (After) 

Qualitative Evaluation

LiDAR QA/QC: Experimental Results (III)
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Original Point Cloud

LiDAR QA/QC: Experimental Results (III)
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Adjusted Point Cloud

Relative Accuracy (IQC) Evaluation

LiDAR QA/QC: Experimental Results (III)
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LiDAR QA/QC: Experimental Results (III)

Before QA/QC
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LiDAR QA/QC: Experimental Results (III)

After QA/QC
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LiDAR QA/QC: Experimental Results (IV)

Strip Number Flying Height Direction

1 1150 m N-S

2 1150 m S-N

3 539 m E-W

4 539 m W-E

5 539 m E-W

6 539 m E-W

Overlapping
Strips Cases

%
of Overlap Direction

Strips 1&2 80% Opposite directions

Strips 3&4 25% Opposite directions

Strips 4&5 75% Opposite directions

Strips 5&6 50% Same direction

Dataset Description
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Method δΔX(m) δΔY(m) δΔω(°) δΔφ(°) δΔκ(°) Δρ(m) δS

Simplified 0.03 -0.01 -26 -91 -19 0.18 0.000046

Quasi-rigorous -0.01 0.02 -40.2 -90.9 -4.58 0.26 -0.000096

Estimated system biases using the Simplified and the Quasi-rigorous methods

LiDAR QA/QC: Experimental Results (IV)
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LiDAR QA/QC: Experimental Results (IV)
Before Calibration After Calibration

Strips 1&2 Strips 1&2

XT (m) YT (m) ZT (m) XT (m) YT (m) ZT (m)

1.10 -0.32 -0.01 0.11 0.07 -0.05

ω (deg) φ (deg) κ (deg) ω (deg) φ (deg) κ (deg)

0.0001 -0.052 -0.002 0.0012 -0.0016 -0.0051

Strips 3&4 Strips 3&4

XT (m) YT (m) ZT (m) XT (m) YT (m) ZT (m)

0.18 0.41 -0.01 -0.01 -0.01 0.01

ω (deg) φ (deg) κ (deg) ω (deg) φ (deg) κ (deg)

0.0484 -0.0005 -0.0011 0.0052 0.0008 -0.0045

Compatibility between overlapping strips before and after the calibration procedure

Relative Accuracy (IQC) Evaluation
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LiDAR QA/QC: Experimental Results (IV)

Before Calibration After Calibration

Mean ΔX (m) -0.36 -0.10
Mean ΔY (m) 0.67 0.24
Mean ΔZ (m) -0.05 -0.015

σX (m) 0.40 0.11
σY (m) 0.29 0.06
σZ (m) 0.24 0.13

RMSEX (m) 0.53 0.14
RMSEY (m) 0.72 0.24
RMSEZ (m) 0.25 0.20

RMSETOTAL (m) 0.93 0.35

RMSE analysis of the photogrammetric check points using extracted control planar 
features from the LiDAR data before and after the calibration procedure

Absolute Accuracy (EQC) Evaluation
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Source: http://www.isprs.org/publications/related/semana_geomatica05/front/abstracts/Dimecres9/F01.pdf

Dataset Description

LiDAR QA/QC: Experimental Results (V)
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Dataset captured by a compact LiDAR system built at EPFL 
operated from the side of a helicopter

Dataset Description

LiDAR QA/QC: Experimental Results (V)
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Platform attitude variation

Flight line ω (o) 
min/max 

φ (o) 
min/max

1 -3.0 / 4.2 6.4 / 9.1
2 -9.4 / -3.0 -4.0 / 1.6
4 6.8 / 8.7 0.6 / 1.4
5 0.0 / 7.5 4.7 / 10.7
6 -11.4 / -3.0 0.4 / 5.0
7 -4.2 / 8.8 -12.9 / -7.4
9 -9.9 / -2.2 1.6 / 23.2

Dataset Description

LiDAR QA/QC: Experimental Results (V)
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Dataset Description

LiDAR QA/QC: Experimental Results (V)
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Strip pairs Flying Direction

Rigorous 1&9; 2&4; 5&6; 5&7

Quasi-rigorous 1&9; 2&4; 5&6; 5&7

Simplified 1&9; 2&4; 5&7

Strip pairs Flying Direction % Overlap
Average

Lateral Distance D
(m)

Average
Flying Height H

(m)
1&9 approx. parallel 75 66 130
2&4 approx. opposite 70 160 130
5&6 cross - - 230
5&7 approx. opposite 75 10 230

LiDAR QA/QC: Experimental Results (V)
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1&9 
~Parallel  Direction

2&4 
~Opposite  Direction

5&6 
~Cross Direction

5&7 
~Opposite Direction

Dataset Description

LiDAR QA/QC: Experimental Results (V)
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Method δΔω(o) δΔφ(o) δΔκ(o) S/δS

Simplified 0.039 0.092 -0.029 -0.00028204

Quasi-rigorous 0.038 0.093 -0.044 -0.00000514

Rigorous -0.094 0.032 90.064 1.00017

Please, note that the estimated parameters are not compatible since different 
coordinate systems definition are utilized in the two calibration approaches.

y
bxb

z
b

xlu

ylu

zlu

x
b

yb
z
b xlu

zlu

ylu

Flight direction
Flight direction

Simplified/Quasi-Rigorous Rigorous

LiDAR QA/QC: Experimental Results (V)
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Before Calibration

After Calibration: Rigorous Approach

1m
After Calibration: Quasi-Rigorous Approach

1m

Qualitative QC
1m

LiDAR QA/QC: Experimental Results (V)
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Before Calibration After Calibration
Rigorous Quasi-Rigorous Simplified

1&9
XT’(m) YT’(m) ZT’(m) XT’(m) YT’(m) ZT’(m) XT’(m) YT’(m) ZT’(m) XT’(m) YT’(m) ZT’(m)

0.00 -0.21 -0.07 0.01 -0.01 0.01 0.03 -0.11 0.01 0.04 -0.13 0.00
Ω’(o) Φ’ (o) Κ’(o) Ω’(o) Φ’ (o) Κ’(o) Ω’(o) Φ’ (o) Κ’(o) Ω’(o) Φ’ (o) Κ’(o)

-0.0177 0.0169 0.0432 0.0178 0.0114 0.0178 0.0178 0.0178 0.0147 0.0128 0.0098 0.0155
2&4

XT’(m) YT’(m) ZT’(m) XT’(m) YT’(m) ZT’(m) XT’(m) YT’(m) ZT’(m) XT’(m) YT’(m) ZT’(m)
-0.53 0.19 0.06 -0.06 -0.02 0.00 -0.11 -0.11 0.00 -0.11 0.13 0.01
Ω’(o) Φ’ (o) Κ’(o) Ω’(o) Φ’ (o) Κ’(o) Ω’(o) Φ’ (o) Κ’(o) Ω’(o) Φ’ (o) Κ’(o)

-0.0217 0.1505 0.0009 -0.0241 -0.0109 -0.0077 -0.0245 -0.0073 0.0032 0.0113 0.0275 0.0031
5&6

XT(m) YT(m) ZT(m) XT(m) YT(m) ZT(m) XT(m) YT(m) ZT(m) XT(m) YT(m) ZT(m)
0.33 -0.46 0.01 0.00 -0.02 0.02 0.02 -0.02 0.02 0.02 -0.02 0.02
Ω (o) Φ (o) Κ (o) Ω (o) Φ (o) Κ (o) Ω (o) Φ (o) Κ (o) Ω (o) Φ (o) Κ (o)

-0.0626 -0.1021 -0.0083 0.0013 0.0070 0.0017 -0.0021 0.0001 0.0007 -0.0049 -0.0014 -0.0026
5&7

XT’(m) YT’(m) ZT’(m) XT’(m) YT’(m) ZT’(m) XT’(m) YT’(m) ZT’(m) XT’(m) YT’(m) ZT’(m)
-0.68 0.36 0.10 -0.02 0.00 0.03 0.04 0.05 0.01 0.04 0.05 0.01
Ω’(o) Φ’ (o) Κ’(o) Ω’(o) Φ’ (o) Κ’(o) Ω’(o) Φ’ (o) Κ’(o) Ω’(o) Φ’ (o) Κ’(o)

-0.0311 0.1847 0.0032 -0.0069 -0.0102 0.0231 -0.0292 -0.0008 0.0209 -0.0288 0.0014 0.0196

Quantitative QC

LiDAR QA/QC: Experimental Results (V)
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Concluding Remarks
• QA/QC of LiDAR mapping is not as mature as those for 

photogrammetric mapping.
– There are several challenges when compared with 

photogrammetric mapping.
• Challenges with QA/QC of LiDAR mapping:

– Raw measurements might not be always available.
– Sophisticated procedures are needed to relate the LiDAR 

data to distinct points (e.g., GCPs).
– LiDAR-derived coordinates is not based on an adjustment 

procedure.
– Quality control measures, which are typically used in 

photogrammetry, are not applicable.
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Concluding Remarks
• Alternative procedures are needed to check for 

systematic biases and evaluate the noise level in the 
point cloud.

• LiDAR system calibration is possible by identifying the 
nature of discrepancies between overlapping strips.
– Models that can be conducted in the absence of the system’s 

raw measurements
– Models that can be conducted in the absence of control 

information 
• Quality control of LiDAR data can be conducted by the 

end user.
• Standards and procedures are needed for QA/QC 

activities.
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Concluding Remarks
• Quality Assurance and Quality Control should not be 

viewed as two independent processes.
– The potential of using the outcome from the quality control to 

improve the system parameters

• The QC should evaluate the following:
– The consistency of derived surfaces from overlapping strips 

(precision)
– The consistency of the derived surface and ground truth 

(accuracy)
– Point density and its utilization in subsequent data processing 
– Quality of derived products (e.g., DTM generation, 

classification & segmentation outcome)


