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Chapters 1 – 6: Overview
• Photogrammetric mapping: introduction, applications, and 

tools
• GNSS/INS-assisted photogrammetric and LiDAR 

mapping
• LiDAR mapping: principles, applications, mathematical 

model, and error sources and their impact.
• QA/QC of LiDAR mapping
• Registration of Laser scanning data

• This chapter will be focusing on the adaptive processing 
of LiDAR data.
– Point cloud characterization
– Segmentation and feature extraction



Laser Scanning Ayman F. Habib2

ADAPTIVE PROCESSING OF 
LIDAR DATA FOR EXTRACTING 
PLANAR/LINEAR FEATURES

Chapter 7
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Overview
• LiDAR Mapping Principles
• LiDAR Data Structuring 
• LiDAR Data Characterization

– Local Point Density (LPD) Estimation

• Planar & Linear Feature Segmentation
– Spatial-Domain Segmentation
– Parameter-Domain Segmentation
– Quality Control of the Segmentation Outcome

• Concluding Remarks
• Current & Future Work
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Source: seaice.acecrc.au

Airborne Laser Scanning Static Terrestrial Laser Scanning

Source:www.cage.curtain.edy.au

Kinematic Terrestrial Laser Scanning

Source:www.optech.ca/lynx.htm

LiDAR Mapping
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LiDAR Mapping

Tripod mounted
scanners
VZ-6000

Airborne laser 
scanners (ALS)
ALTM Gemini

Mobile laser 
scanners

VMX-250 

Photos courtesy of RIEGL Laser Measurement Systems, and Optech Inc.
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LiDAR Data 
Applications

Heritage 
Documentation

Source: www.nytimes.com

Transportation 
Planning

Source: www.isgs.uiuc.edu

Power–Line  
Mapping

Source: www.merrick.com

Flood Plain 
Mapping

Source: www.maritimejournal.com

3D City 
Modeling 

Source: www.trimble.com

LiDAR mapping should have reliable QA/QC guidelines and the 

data should be carefully processed to extract useful information 

for these applications.

LiDAR Mapping
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LiDAR Mapping: Ultimate Goal

Airborne scan

Terrestrial scan 

Combined and segmented scans
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LiDAR Mapping: Ultimate Goal
Airborne ScanTerrestrial Scan ATerrestrial Scan BIntegrated Scans A rooftop profile

Noise level

Density 
variations

Top view

We need a data characterization 
step to take into account the 

varying nature of the input point 
clouds.
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Airborne LiDAR Mapping

Source: http://www.ambercore.com/titan.php



Laser Scanning Ayman F. Habib10

Airborne LiDAR Mapping

Three Measurement Systems

1. GNSS

2. IMU

3. Laser scanner emits laser 
beams with high 
frequency and collects the 
reflections.

INS

GNSS

GNSS

IMU
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Airborne LiDAR Mapping

ALS 60 (Leica Geosystems)

Operational LiDAR Systems
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Airborne LiDAR Mapping

OPTECH ALTM GEMINI

Operational LiDAR Systems
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Airborne LiDAR Mapping

long-range RIEGL LMS-Q680i 

Operational LiDAR Systems
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Airborne LiDAR Mapping
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Airborne LiDAR Mapping

• LiDAR produces accurate point cloud along object-
space surfaces in addition to intensity images. 

Elevation Data Intensity Image
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Static Terrestrial Laser Scanning

Source: http://www.ambercore.com/titan.php
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Static Terrestrial Laser Scanning

Accuracy

Range

Pulse Based Phase Based Triangulation Based

1mm 0.01mm

100m 10m 1m

Konica Minolta, 
http://www.konicaminolta.com/instruments/products/3d/index.
html, (accessed October 7, 2009)

Trimble, http://www.trimble.com/trimblegx.shtml, (accessed 
March 16, 2010)

Leica Geosystems, http://hds.leica-geosystems.com/en/index.htm, 
(accessed October 7, 2009)

Hybrid Type Panoramic Type Camera Type

Time of Flight Systems
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Static Terrestrial Laser Scanning
• A static terrestrial laser scanner (pulse/phase-based) is an 

automatically driven total station/EDM.  
• It measures distances to objects at uniform increments in 

the horizontal and vertical directions.  
• These measurements are then converted into a Cartesian 

coordinate system.  
• Most terrestrial laser scanners would even provide 

intensity and RGB values, although this is not always the 
case.
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Static Terrestrial Laser Scanning

Examples of Operational Systems: 
Mensi GS200, Leica (Cyrax) HDS3000, Riegl LMS Z210
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Static Terrestrial Laser Scanning

Landslide Hazard Analysis
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Static Terrestrial Laser Scanning

3D Modeling of Electrical Substations
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Kinematic Terrestrial Laser Scanning

Source: http://www.ambercore.com/titan.php
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Source: http://www.ambercore.com/titan.php
Source: www.riegl.com

Source: http://www.streetmapper.net/

Source: http://www.riegl.com/uploads/tx_pxpriegldownloads/10_DataSheet_RIEGL_VMX-250_08-04-2010_PRELIMINARY_pdf.pdf

Kinematic Terrestrial Laser Scanning
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Kinematic Terrestrial Laser Scanning

Road Furniture Mapping
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Kinematic Terrestrial Laser Scanning

Road Furniture Mapping
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Kinematic Terrestrial Laser Scanning

Railroad Network Mapping
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LiDAR Equation & Coordinate Systems

• LiDAR equation is a vector summation procedure.
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LiDAR Equation
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• Note: There is no redundancy in the surface reconstruction process.
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LiDAR Data Structuring

kd-Structure
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Structuring the Laser Points 
• Objectives: 

– Efficient sorting and organization of laser points
– Speed up the process of searching for the nearest neighbour(s) of a point

• Data structures:
– Delaunay triangulation: A triangulation of the laser point cloud divides its convex 

hull into a set of triangles. A circle passing through the vertices of any triangle doesn’t 
contain any other point of the point set (Okabe et al., 1992).

× This structure is defined in the XY-plane and does not consider the points’ heights.

– Octree data structure: Octrees are used to partition a three-dimensional space by 
recursively subdividing it into eight subspaces.

× It cannot guarantee a fully balanced hierarchical data structure.
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Structuring the Laser Points: kd-Tree Structure
• kd-tree data structure construction:

– Recursive subdivision of the three-dimensional space along the longest extent of the 
data in the X, Y, or Z direction

– The splitting plane is perpendicular to the chosen extent direction and passes through 
the point with the median coordinate along the selected extent (Sadgewick, 1992).

• Advantages
 Efficient structuring with minimal number of subdivisions
 More efficient nearest neighbour search algorithms
 Balanced data structure

P1

P2

P3

P4

P5

P6

P7
P8

P9

P10 P11

P12

P13

P14
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Searching for the Nearest Neighbour of a Point
• Nearest neighbour of a given point

I. Start with the root node, the algorithm moves down the tree 
recursively in the same way it would if the point in question 
were being inserted.

II. Initial distance (infinity) is reduced as closer points are 
discovered.

III. Steps I and II are repeated until the algorithm reaches the leaf 
node.

IV. Search the other side of the splitting plane for points which 
may be closer to the point in question by checking the 
intersection of the splitting hyper plane with a sphere centered 
at the point in question with a radius equivalent to the distance 
to the closest discovered point. In case of intersection between 
them, the other branch of the tree should also be searched for a 
closest neighbour.

V. The node with the smallest distance is returned as the nearest 
neighbour.
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Searching for the Nearest Neighbour of a Point
• Nearest neighbour of a given point (P14): Schematic view
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P1

P2

P3

P4

P5

P6

P7

P8

P9

P10
P11

P12

P13

P14
P1

P2P3

P7P6

P12

P4 P5

P13 P14 P10 P11 P8 P9

d1

Candidate Point = P1
Minimum Distance = d1

Since P14 is on the left hand side of P1, the left 
hand side of P1 is traced for nearest neighbour first.

Searching for the Nearest Neighbour of a Point
• Nearest neighbour of a given point (P14): Schematic view
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P2

P4

P5

P7

P8

P9

P10
P11

P14
P1

P2P3

P7P6

P12

P4 P5

P13 P14 P10 P11 P8 P9

d2

P1

P3

P6
P12

P13

Candidate Point = P3
Minimum Distance = d2

Since P14 is on the right hand side of P3, the right 
hand side of P3 is traced for nearest neighbour first.

Searching for the Nearest Neighbour of a Point
• Nearest neighbour of a given point (P14): Schematic view
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P1

P3

P6

P7

P12

P13

P14
P1

P2P3

P7P6

P12

P4 P5

P13 P14 P10 P11 P8 P9

d3

P2

P4

P5

P8

P9

P10
P11

Candidate Point = P7
Minimum Distance = d3

Since P14 is on the right hand side of P7, the right hand side 
of P7 is traced for nearest neighbour first.

Searching for the Nearest Neighbour of a Point
• Nearest neighbour of a given point (P14): Schematic view
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P1

P3

P6

P7

P12

P13

P14
P1

P2P3

P7P6

P12

P4 P5

P13 P14 P10 P11 P8 P9

d3

P2

P4

P5

P8

P9

P10
P11

Candidate Point = P7
Minimum Distance = d3

The hyperplane passing through P7 intersects the sphere, with radius 
equivalent to the minimum distance, centered at the point of interest,

We should also check the left hand side of P7 for the nearest neighbour
(there is not any node on the left hand side of P7).

Searching for the Nearest Neighbour of a Point
• Nearest neighbour of a given point (P14): Schematic view
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P1

P3

P6

P7

P12

P13

P14
P1

P2P3

P7P6

P12

P4 P5

P13 P14 P10 P11 P8 P9

d3

P2

P4

P5

P8

P9

P10
P11

Candidate Point = P7
Minimum Distance = d3

Since the hyperplane passing through P3 does not intersect the sphere, 
with radius equivalent to the minimum distance, centered at the point 
of interest, there is no need to check the left hand side of P3 for the 

nearest neighbour.

Searching for the Nearest Neighbour of a Point
• Nearest neighbour of a given point (P14): Schematic view
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P1

P3

P6

P7

P12

P13

P14
P1

P2P3

P7P6

P12

P4 P5

P13 P14 P10 P11 P8 P9

d3

P2

P4

P5

P8

P9

P10
P11

Nearest Neighbour Point = P7
Minimum Distance = d3

Since the hyperplane passing through P1 does not intersect the sphere, 
with radius equivalent to the minimum distance, centered at the point 
of interest, there is no need to check the right hand side of P1 for the 

nearest neighbour.

Searching for the Nearest Neighbour of a Point
• Nearest neighbour of a given point (P14): Schematic view
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Searching for N. N. of a Point in a Given Range
• This is implemented by a modified nearest neighbour 

search. The modifications are:
I. Start with the root node, the algorithm moves down the tree 

recursively in the same way it would if the point in question 
were being inserted (Initial distance is not reduced as closer 
points are discovered)

II. Steps I is repeated until the algorithm reaches the leaf node.
III. Search the other side of the splitting plane for points with 

distances less than the defined range by checking the 
intersection of the splitting hyper plane with a sphere centered 
at the point in question with a radius equivalent to the defined 
range. In case of intersection between them, the other branch 
of the tree should also be searched.

IV. All discovered points within the defined range “d” are 
returned.
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P1

P2

P3

P4

P5

P6

P7

P8

P9

P10
P11

P12

P13

P14

d

Searching for N. N. of a Point in a Given Range
• This is implemented by a modified nearest neighbour 

search. The modifications are:
– Initial distance is not reduced as closer points are discovered.
– All discovered points within the distance d are returned.
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Searching for k Nearest Neighbours of a Point
I. Find the nearest neighbour of the point in question
II. Compute the distance between the point in question and its nearest 

neighbour
III. Calculate the radius for a new search by assuming a square whose 

dimensions are                 , where d is the distance to the nearest 
neighbour

IV. Find the neighbouring points in a spherical neighbourhood with radius r
centered at the point in question

V. If less than k points are found in the spherical neighbourhood, the search 
radius is increased until at least k points are found in the defined 
neighbourhood.

VI. If more than k points are found in the spherical neighbourhood, only the 
k nearest neighbours are returned.

2 2
2 2

kd kr d 

kd kd
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LiDAR Data Characterization

Local Point Density Estimation
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Source: http://www.isprs.org/publications/related/semana_geomatica05/front/abstracts/Dimecres9/F01.pdf

Local Point Density Estimation

LiDAR Data Characterization
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Low point density

High point density

Objective: Processing laser datasets with large variation in point density

LiDAR Data Characterization
Local Point Density Estimation
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Leica Scanner P20
1 million points/second

120m range 
±6mm at100m position error

*http://leica-geosystems.com

• Static Terrestrial Laser Scanner (STLS) refers to LiDAR 
equipment that is mounted on a tripod. 

FARO Focus3D X 330
976,000 points/second

330m range 
±2mm range error

*http://faro.com

LiDAR Data Characterization
Local Point Density Estimation



Laser Scanning Ayman F. Habib47

Low point density

High point density

Objective: Processing laser datasets with large variation in point density

LiDAR Data Characterization
Local Point Density Estimation
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LiDAR Data Characterization
• Local point density estimation: why? 

Definition of meaningful neighborhoods of irregularly-spaced LiDAR points 
for reliable data processing activities 
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LiDAR Data Characterization
• Local point density estimation: why?  

Adaptive processing of LiDAR Data 

Define adaptive neighborhood for precise 
estimation of segmentation attributes

POI

Origin

POI

Origin
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LiDAR Data Characterization
• Local point density estimation: why?  

Adaptive processing of LiDAR Data 

Spatial-Domain Segmentation
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LiDAR Data Characterization
• Local point density estimation: why?  

Adaptive processing of LiDAR Data 

Boundary Detection
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LiDAR Data Characterization
• Local point density estimation: why?

– LiDAR Data Down Sampling while maintaining the information 
content 

High Point Density
(remove points)

Low Point Density
(maintain points)
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LiDAR Data Characterization
• Local point density estimation: why?

– LiDAR Data Down Sampling while maintaining the information 
content Original Data



Laser Scanning Ayman F. Habib54

LiDAR Data Characterization
• Local point density estimation: why?

– LiDAR Data Down Sampling while maintaining the information 
content Original Segmented Data
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LiDAR Data Characterization
• Local point density estimation: why?

– LiDAR Data Down Sampling while maintaining the information 
content Down-sampled Data
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LiDAR Data Characterization
• Local point density estimation: why?

– LiDAR Data Down Sampling while maintaining the information 
content Segmented Down-sampled Data
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LiDAR Data Characterization
• Local Point Density Estimation:

• A measure of the average inter-point spacing 

• Local point density variations are caused by:

– Change in the topography/elevation
– Type of platform: terrestrial vs. airborne
– Irregular movements of the acquisition platform
– Number of overlapping strips
– Scattering properties of the mapped surface  

along the surface it belongs to
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LPD Estimation: Existing Approaches

• Box-counting method (County, 2003): Derived the point density by a 
“box counting”, where the area of the rectangle is associated with 
the total number of LiDAR points inside the rectangle.

• The derived value for the local point density depends on the size and 
placement of the boxes. There is no standard for the determination of 
the box size and its placement within an area.

4 4 3

3 8

635

6
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Delaunay triangulated edges for  actual LiDAR points are shown in red. 
Unbiased LiDAR Data Measurement, Ty Naus, Fugro Horizons, Inc

LPD Estimation: Existing Approaches
• TIN-based point density determination (Shih and Huang, 2006)

– Local point spacing determination:
I. Construct a Delaunay triangulation 
II.Calculate the 2D length of every edge connecting the point in question to 

its neighbors 
III.Calculate the average of the edges’ lengths and record it as the local 

point spacing 
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Voronoi polygons shown in blue for actual LiDAR points – the 
triangulation edges are shown in red.

1  
   

Local Pnt Density
Local Voronoi Polygon Area
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Unbiased LiDAR Data Measurement, Ty Naus, Fugro Horizons, Inc

LPD Estimation: Existing Approaches
• TIN-based point density determination (Shih and Huang, 2006)

– Local point density determination:
I. Construct a Voronoi diagram using constructed TIN structure 
II.Calculate the area of the Voronoi polygon for each point 
III.Assign the inverse of area value, or density in terms of points per unit 

squared, to the point
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LPD Estimation: Existing Approaches
• Drawbacks of existing techniques:

– They are based on the 2D neighborhood of individual points.
– These techniques are not applicable for both airborne and 

terrestrial laser data (they are mainly suited for airborne data 
over flat/horizontal terrain).

– For the box counting technique, the derived value for the local 
point density depends on the size and placement of the boxes. 
There is no standard for the determination of the cell size and its 
placement within an area.
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LPD Estimation: Proposed Approaches
• Objectives:

– The local point density should be estimated while considering 
the 3D relationship among the points and the physical properties 
(planarity) of the surfaces enclosing individual points.

– In order to derive a meaningful estimate of the point density, we 
introduce two approaches for deciding whether the point of 
interest belongs to a planar surface or not:

• Eigen value analysis of the dispersion of the points in a spherical 
neighborhood relative to their centroid

• Eigen value analysis of the dispersion of the points in a spherical 
neighborhood relative to the point in question/point of interest 
(POI)

• Adaptive cylinder approach
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LPD Estimation: Proposed Approaches (1)

− Define a spherical neighborhood for the point of interest – the neighborhood 
includes n points (number of points needed for reliable plane definition)

− Calculate the dispersion matrix of the points in the spherical neighborhood relative 
to the centroid point

− Eigen value decomposition of the dispersion matrix

If 𝜆  0 ≪ 𝜆 , 𝜆 the point of interest (POI) is considered to belong to a planar 
surface.

• Classification using Eigen value analysis of the dispersion 
of 3D neighboring points relative to their centroid:
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n+1 Number of points within the spherical neighborhood
rn The distance between the POI and its nth-farthest neighbor

2

1
 n

nLPD
r




− Once the planarity of the established neighborhood is checked 
using the Eigen value analysis, the local point density index is 
calculated as follows:

.

.POI

.

.Centroid

• Classification using Eigen value analysis of the dispersion 
of 3D neighboring points relative to their centroid:

LPD Estimation: Proposed Approaches (1)
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− Disadvantages:
 Points that do not belong to the local planar surface (outliers) 

are considered in LPD estimation.
 Does not consider the fact that the point of interest might not 

belong to the local planar surface

.

.
POI

.

.Centroid

• Classification using Eigen value analysis of the dispersion 
of 3D neighboring points relative to their centroid:

LPD Estimation: Proposed Approaches (1)
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LPD Estimation: Proposed Approaches (2)

 Define a spherical neighbourhood for the point in question which includes at least 
n (number of points for reliable plane definition) points

 Calculate the dispersion matrix for the points in spherical neighbourhood relative 
to the point of interest (POI)

 Eigen value decomposition of the dispersion matrix

If                            the point of interest (POI) is considered to belong to a planar 
surface.
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• Classification using Eigen value analysis of the dispersion 
of 3D neighbouring points relative to the POI:
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n+1 Number of the points within the spherical neighbourhood

2 
1

nr
nLPD





.

.
POI

LPD Estimation: Proposed Approaches (2)

• Classification using Eigen value analysis of the dispersion 
of 3D neighbouring points relative to the POI:

• Disadvantages:
 Points that do not belong to the local planar surface (outliers) are 

considered in LPD estimation
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• Classification using an adaptive cylinder:
− This approach is based on defining a cylinder, which changes its 

orientation with the local planar surface. This cylinder is used to 
decide whether the point belongs to a planar or rough surface.

• Advantages:
 Takes into consideration whether the point of interest belongs to 

the local planar surface or not
 Points that do not belong to the local planar surface (outliers) are 

not considered in local point density estimation.

Adaptive Cylinder

LPD Estimation: Proposed Approaches (3)
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LPD Estimation: Proposed Approaches (3)

• Classification using an adaptive cylinder:
− This approach is based on defining a cylinder, which changes its 

orientation with the local planar surface. This cylinder is used to 
decide whether the point belongs to a planar or rough surface.
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If the iterative plane fitting procedure does not converge within a pre-specified 
number of iterations, the point of interest is classified as a non-planar point
and we will not estimate the local point density index for this point.

First Planed

Removed as outliers

Derivation of the Adaptive Cylinder

LPD Estimation: Proposed Approaches (3)
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LPD Estimation: Proposed Approaches (3)

• The point of interest should be within the adaptive cylinder, and

• The majority of the points within the spherical neighborhood 
should be inside the adaptive cylinder.

• Classification using an adaptive cylinder:

Planar Non-planar

Occupancy Rate: 100% Occupancy Rate: 60%
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2
n

kLPD
r



k (number of  pnts in adaptive cylinder) n (number of  pnts in sphere)

− Once the planarity of the established neighborhood is checked 
using the adaptive cylinder, the local point density index is 
calculated as follows:

• Classification using an adaptive cylinder:

k Number of points within the adaptive cylinder
rn The distance between the POI and its nth-farthest neighbor

LPD Estimation: Proposed Approaches (3)

3D Local
Neighborhood

QP
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LPD Estimation: Proposed Approaches
• Eigen value analysis of the dispersion matrix of the points in a 

spherical neighborhood relative to their centroid (Drawbacks):
1. This approach classifies the neighborhood without considering 

the fact that the point in question might not belong to the 
planar neighborhood.

2. Non-coplanar points are considered in LPD estimation.

• Eigen value analysis of the dispersion matrix of the points in a 
spherical neighborhood relative to the POI (Drawback):
1. Non-coplanar points are considered in LPD estimation.

• Adaptive cylinder (Advantage):
– Only the points that belong to the planar neighborhood are taken 

into consideration during the local point density computation 
while making sure that the query point belongs to the planar 
neighborhood.
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Experimental Results (Airborne Data – 1)
• Location: University of Calgary campus
• Average point density: 1 pnts/m2

Threshold Value
No. of neighboring points for Eigen-values calculation 12
No. of neighboring points for best fit plane definition 12
Height of cylinder 0.8 m
Planarity ratio 95%
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• Orthophoto over the test area:

Experimental Results (Airborne Data – 1)



Laser Scanning Ayman F. Habib76

• Original LiDAR data:

Experimental Results (Airborne Data – 1)
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Planar 
Non-Planar

• Dispersion of the point’s 3D neighbors relative to their centroid:

Experimental Results (Airborne Data – 1)
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0 2.10

• Dispersion of the point’s 3D neighbors relative to their centroid:

Experimental Results (Airborne Data – 1)
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Planar 
Non-planar

• Adaptive cylinder:

Experimental Results (Airborne Data – 1)
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0 1.98

• Adaptive cylinder:

Experimental Results (Airborne Data – 1)
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Experimental Results (Airborne Data – 2)

• Location: Switzerland
• Mean point density: 7 pnts/m2

Threshold Value
No. of neighboring points for Eigen-values calculation 12
No. of neighboring points for best fit plane definition 12
Height of cylinder 0.8 m
Planarity ratio 95%
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• Original LiDAR data:

Experimental Results (Airborne Data – 2)
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Planar 
Non-Planar

• Dispersion of the point’s 3D neighbors relative to their centroid:

Experimental Results (Airborne Data – 2)
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0 95.2

• Dispersion of the point’s 3D neighbors relative to their centroid:

Experimental Results (Airborne Data – 2)
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• Adaptive cylinder:

Planar 
Non-Planar

Experimental Results (Airborne Data – 2)
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0 92.22

• Adaptive cylinder:

Experimental Results (Airborne Data – 2)
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Experimental Results (Terrestrial Data)

• Location: Rozsa Center, University of Calgary
• Mean point density: 4218 pnts/m2

Threshold Value
No. of neighboring points for Eigen-values calculation 25
No. of neighboring points for best fit plane definition 25
Height of cylinder 0.04 m
Planarity ratio 95%
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• Digital image:

Experimental Results (Terrestrial Data)
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• Original LiDAR data:

Experimental Results (Terrestrial Data)
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Planar 
Non-Planar

• Dispersion of the point’s 3D neighbors relative to their centroid:

Experimental Results (Terrestrial Data)
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0.01 60702

• Dispersion of the point’s 3D neighbors relative to their centroid:

Experimental Results (Terrestrial Data)
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Planar 
Non-planar

• Adaptive cylinder:

Experimental Results (Terrestrial Data)
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560860

• Adaptive cylinder:

Experimental Results (Terrestrial Data)
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LiDAR Data Downsampling
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LiDAR Data Downsampling: Introduction
• LiDAR Data Down Sampling while maintaining the 

information content 

High Point Density
(remove points)

Low Point Density
(maintain points)
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LiDAR Data Downsampling: Introduction
• LiDAR Data Down Sampling while maintaining the 

information content 
Original Data

Darker points correspond to higher point density.
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LiDAR Data Downsampling: Introduction
• LiDAR Data Down Sampling while maintaining the 

information content 
Original Segmented Data
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LiDAR Data Downsampling: Introduction
• LiDAR Data Down Sampling while maintaining the 

information content 
Down-sampled Data

Darker points correspond to higher point density.
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LiDAR Data Downsampling: Introduction
• LiDAR Data Down Sampling while maintaining the 

information content 
Segmented Down-sampled Data
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LiDAR Data Downsampling: Introduction

Density range up to 6000 pts/m2
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LiDAR Data Downsampling: Motivation
• A downsampling process can help in reducing the 

segmentation execution time. 
• An inappropriate downsampling might compromise the 

segmentation results.
• Current methods do not consider the characteristics of the 

physical surface during the downsampling process:
– Uniform downsampling
– Distance-based downsampling
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LiDAR Data Downsampling: Objectives
• Propose an adaptive downsampling procedure that only 

removes redundant points. 
– More points are removed in areas with high point density.
– The majority of points will be maintained in areas with less 

point density.
– The downsampling should consider the nature of the 

encompassing physical surface.

• Evaluation Criteria: Compare the segmentation results 
from original and thinned point clouds using different 
downsampling techniques.
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Adaptive Downsampling: Methodology

Point Clouds

Planar and Linear Feature Segmentation Extraction

Planar and
Linear/Cylindrical Segments

Segmentation Quality Control and Evaluation

Adaptive 
downsampling

Random 
downsampling

Point-spacing-based 
downsampling
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Adaptive Downsampling: Methodology
• Purpose: Remove points in high density areas and keep 

the points in low density areas.

• Procedure: 
– Calculate the point density
– Adaptive downsampling
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Adaptive Downsampling: Methodology

• Local Point Density (LPD) Estimation:
3D Local

Neighborhood

QP

2
2)(pnts/m  

nr
kLPD




k Number of points within the adaptive cylinder
rn The distance between the POI and its nth-farthest neighbor

The points within the established 
3D neighborhood are considered for 
local point density estimation if:

• They belong to the derived 
adaptive cylinder.
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Adaptive Downsampling: Methodology

HistogramSample point cloud

HistogramDownsampled point cloud

where,
: desired density
: density of point 

: 
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Adaptive Downsampling

Density range up to 6000 pts/m2Density range up to 200 pts/m2
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Experimental Results
• Dataset 1 --- Original dataset (STLS)

• Dataset 2 --- Original dataset (STLS)
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Experimental Results
• Dataset 3 --- Original dataset (UAV)
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Experimental Results
• The original and downsampled datasets are tested.

• Original Dataset Specifications

Dataset 1 Dataset 2 Dataset 3

Number of points 2,765,436 785,243 230,434

Max. Point Density (pts/m2) 562,239 24,071 1,264

Min. Point Density (pts/m2) 0.002 0.002 0.092

Mean point density (pts/m2) 6,808 1,996 109
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Experimental Results
• We set different desired point density values for the 

adaptive downsampling. 
• The inter-point spacing is set based on the desired point 

density 
• Random downsampling is applied using “Cloudcompare” 

to have the same number of points as the adaptively 
downsampled dataset.

Adaptive downsampling
Desired point density (pts/m2)

Point-spacing-based downsampling
Min. spacing between points (m)

Dataset 1 220 0.0674

Dataset 2 200 0.0707

Dataset 3 50 0.1414
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Experimental Results
• Statistics for the point-density values for the original and 

downsampled datasets
• Dataset 1 

Original Adaptive
downsampling

Random
downsampling

Point-spacing-based
downsampling

Dataset 1
Number of Points 2,765,436 841,051 841,051 499,770

Max. Point
Density (pts/𝑚 )

562,239.317 1,071.759 308,826.804 454.679

Min. Point Density
(pts/𝑚 )

0.002 0.002 0.000 0.001

Mean point density
(pts/𝑚 )

6,807.726 178.526 2,000.476 108.672
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Experimental Results
• Statistics for the point-density values for the original and 

downsampled datasets
• Dataset 2 

Original Adaptive
downsampling

Random
downsampling

Point-spacing-based
downsampling

Dataset 2
Number of Points 785,243 343,237 343,237 223,957

Max. Point
Density (pts/𝑚 )

24,071.217 946.743 19,103.060 386.271

Min. Point
Density (pts/𝑚 )

0.002 0.002 0.002 0.002

Mean point
density (pts/𝑚 )

1,995.906 151.371 947.618 90.557
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Experimental Results
• Statistics for the point-density values for the original and 

downsampled datasets
• Dataset 3

Original Adaptive
downsampling

Random
downsampling

Point-spacing-based
downsampling

Dataset 3
Number of Points 230,434 137,219 137,219 74,785

Max. Point Density
(pts/𝑚 )

1,264.293 188.815 849.833 53.950

Min. Point Density
(pts/𝑚 )

0.092 0.092 0.090 0.090

Mean point density
(pts/𝑚 )

108.988 43.310 66.195 22.126
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Experimental Results
• Segmentation execution time for the different datasets

Time (hh:mm:ss)
Dataset Original Dataset Adaptive 

downsampling dataset
Random 
downsampling dataset

Point-spacing-based
downsampling dataset

1 01:10:46 00:11:30 00:17:51 00:05:17
2 00:33:17 00:05:43 00:06:00 00:02:51
3 00:03:31 00:01:33 00:01:41 00:00:50
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Experimental Results
• Dataset 1 – Original Data

• Planar Segments after Quality Control

• Planar Segments before Quality Control

STLS Dataset
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Experimental Results
• Dataset 1 – Adaptive downsampling

STLS Dataset• Planar Segments after Quality Control

• Planar Segments before Quality Control
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Experimental Results
• Dataset 1 – Random downsampling

Missing
Incorrect 

STLS Dataset• Planar Segments after Quality Control

• Planar Segments before Quality Control
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Experimental Results
• Dataset 1 – Point-spacing-based downsampling

Incomplete Incorrect 

STLS Dataset• Planar Segments after Quality Control

• Planar Segments before Quality Control
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Experimental Results

STLS Dataset• Planar Segments after Quality Control

• Planar Segments before Quality Control

• Dataset 2 – Original Data
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Experimental Results

STLS Dataset• Planar Segments after Quality Control

• Planar Segments before Quality Control

• Dataset 2 – Adaptive downsampling
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Experimental Results
• Dataset 2 – Random downsampling

Missing 

Incomplete 

STLS Dataset• Planar Segments after Quality Control

• Planar Segments before Quality Control
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Experimental Results
• Dataset 2 – Point-spacing-based downsampling

Missing Missing 

STLS Dataset• Planar Segments after Quality Control

• Planar Segments before Quality Control
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Experimental Results
• Dataset 3 – Original Data

• Planar Segments before 
Quality Control

• Planar Segments after Quality 
Control

UAV Dataset
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Experimental Results

• Planar Segments before Quality 
Control

• Planar Segments after Quality 
Control

UAV Dataset

• Dataset 3 – Adaptive downsampling
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Experimental Results
• Dataset 3 – Random downsampling

Missing 

Incomplete

• Planar Segments before 
Quality Control

• Planar Segments after Quality 
Control

UAV Dataset
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Experimental Results
• Dataset 3 – Point-spacing-based downsampling

Incomplete

• Planar Segments before 
Quality Control

• Planar Segments after Quality 
Control

UAV Dataset
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Concluding Remarks
• We introduced an adaptive downsampling strategy while 

comparing its performance through point density and 
segmentation results for three downsampled datasets.

• Compared with other methods, the adaptive 
downsampling provides the closest mean point density to 
the desired one. 

• After the segmentation, the adaptive downsampling
strategy maintained the major details in the different 
datasets.

• We are working on more intelligent adaptive 
downsampling as well as quantitative approaches for 
evaluating the performance of the different downsampling
strategies.
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LiDAR Data Segmentation
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LiDAR Data Segmentation
• Segmentation Process: Abstraction of the LiDAR points 

into distinct regions whose constituents share similar 
attributes.

– Segmentation is usually considered as the prerequisite step for 
feature extraction and data interpretation.

Original point cloud                 Segmented point cloud  
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LiDAR Data Segmentation: Previous Work
I. Spatial-domain techniques segment the point cloud based on the 

proximity of points and similarity of locally estimated attributes.
− Dependency of the majority of these approaches on the selection of seed points
− Sensitivity to noisy data
− Non-optimal segmentation around edges where two surfaces meet

II. Parameter-domain techniques aggregate points with similar 
attributes into clusters in an attribute space. 

− Lack of computational efficiency when dealing with multidimensional 
attributes for a massive amount of points 

− Not considering the connectivity of the points in the object domain

Drawbacks:

• Both techniques do not consider variations in the local point density within the 
segmentation process.

• There is no established procedure for quality control of the segmentation results.
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LiDAR Data Segmentation: Objectives
• Introduce new approaches for adaptive LiDAR data 

segmentation while considering local point density variations

• The developed approaches should be capable of dealing with 
heterogeneous laser scanning data.

• Quality control of the LiDAR data segmentation results 

• Comparative analysis of spatial-domain and parameter-domain 
LiDAR data segmentation approaches
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Spatial-Domain Segmentation

Import LiDAR data

Single Scan Segmentation 
(Estimate point density, surface roughness, 

and local surface normal)

Iterative Closest Projected 
Point (ICPP)

Heterogeneous Segmentation

Heterogeneous Segmentation
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5% seeds

seed i

closest n points to i

fit plane, compute ?
σ > tσ ≤ t

assign flag  f > 0

closest n points to i’s
neighbors

point j check flag f calculate d

update ?

d < t

d ≥ tf > 0

f ≤ 0

f = -1 : Seed point
f = 0  : Unclassified points
f > 0 : Classified points
t: User defined threshold
σ: Plane fitting standard deviation
d: Normal distance to a plane

j++

i++

Loop

Legend

Spatial-Domain Segmentation
Single Scan Segmentation
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Spatial-Domain Segmentation

A subset of collected airborne 
LiDAR points, where 5% of the 
points are randomly selected as 
seeds (dark points) for the region 
growing purposes

Single Scan Segmentation
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Spatial-Domain Segmentation

The progress of the segmentation 
after processing 65% of the data 
points

Single Scan Segmentation



Laser Scanning Ayman F. Habib137

Spatial-Domain Segmentation

The progress of the segmentation 
after processing 85% of the data 
points

Single Scan Segmentation
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Spatial-Domain Segmentation

The progress of the segmentation 
after processing 100% of the data 
points (non-segmented points are 
shown in dark orange)

Single Scan Segmentation
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Spatial-Domain Segmentation

Segmentation results (including non-segmented points)

Single Scan Segmentation
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Spatial-Domain Segmentation

Segmentation results (excluding non-segmented points)

Single Scan Segmentation
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Spatial-Domain Segmentation
• For a point P in S1, find the closest three points in S2

• A match is established between a point in S1 and a triangle 
P , P , P in S2

• The pair (P, P ) is used for matching using 
the conventional ICP techniques, thus 
named the ICPP

*Condition: P∈ 𝐶𝑜𝑛𝑣𝑒𝑥 P , 𝑃 , 𝑃 , 𝑃

0 𝑻 𝑹 𝒑′ 𝑻 𝑹 𝒑

Multi-Scan Registration: Iterative Closest Projected Point (ICPP)
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Spatial-Domain Segmentation

Over-segmentation caused by occlusions (i.e., shadows)Proper segmentation despite the presence of occlusion

Heterogeneous Segmentation
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Found planar points      
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Found planar points      
anywhere?

Start

End

Spatial-Domain Segmentation
Heterogeneous Segmentation
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Spatial-Domain Segmentation
Heterogeneous Segmentation
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Parameter Domain Segmentation

Planar Segmentation
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Conceptual Basis

Segmentation

Neighborhood Definition

Attribute Evaluation

Aggregation/Clustering
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Neighborhood Definition

Neighborhood defined by triangulations
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Neighborhood defined by sphere

Neighborhood Definition
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Neighborhood defined by adaptive cylinder
Neighborhood: Neighboring points that belong to the same physical surface.

Neighborhood Definition
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target point

First plane

Final plane

d

Neighborhood defined by sphere

Height of 
cylinder

Removed 
outliers

Final plane

Neighborhood defined by adaptive cylinder

Adaptive Cylinder Derivation 

Neighborhood Definition
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Planar patch attribute computation

n

2
nZnYnXn zyx 

origin

plane

),,( zyx nnn 1n

Each point i has its own vector, in

2n
3n 4n

5n 6n
7n

8n
9n

10n

target point
neighborhood

Attribute Evaluation
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1n

plane 1 plane 2

2n
3n 4n

5n 6n
7n

8n
9n

10n

Attribute Evaluation

Suitable Attributes 
1. Normal vector components between a given origin and the planes defined 

by neighboring points using adaptive cylinder can be used as Attributes. 

2. 4D accumulator array → computationally expensive.
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Attribute Evaluation

1. Normal distances between a given origin and the planes defined by 
neighboring points using adaptive cylinder can be used as Attributes. 

2. 2D accumulator array → quite convenient

3. Using only one origin might cause ambiguities in the derived attributes.

131211 nnn 

origin 1

12n

13n11n

Plane Attribute

Red

Green

Blue

11n

12n

13n

Suitable Attributes 
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1. Normal distances between two origins and planes defined by neighboring 
points using adaptive cylinder are used as Attributes in this research. 

2. 3D accumulator array → convenient

3. Using two origins can eliminate resulting ambiguities when using one 
origin. 

21n

22n

23n

Attribute

origin 1

11n

12n

13n

origin 2
21n

22n

23n

Plane

Red

Green

Blue

11n

12n

13n

131211 nnn  232221 nnn 

Suitable Attributes 

Attribute Evaluation
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Ambiguity from two origins

origin1 origin2

r1

r2

coordinates in the accumulator array

(r1, r2)
(r1, r2)
(r1, r2)
(r1, r2)

Attribute Evaluation
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Attribute Evaluation

1. Assumption: slopes of building roofs < 45°
(since most building roofs are flat or gently sloped)

2. Slope of a line connecting two origins = 
45°

slopes > 45°
not existing

45°

Ambiguity from two origins
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Clustering

Proximity

Homogeneity

Clustering
Planar patches 

+ Initial boundaries

Simultaneously considering Homogeneity (globally) in the parameter space 
+ Proximity (locally) in the object space  Accurate & Robust solution
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Clustering

Accumulator Array
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Clustering

Accumulator Array (Side View)

N
o 
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 L

iD
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First Origin

How can we cluster points based on 
homogeneity and proximity? 
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Clustering
N

o 
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First Origin

Starting peak

Accumulator Array (Side View)
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Clustering
N

o 
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First Origin

Check homogeneity and proximity

Accumulator Array (Side View)

Starting peak
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Clustering
N

o 
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First Origin

Check homogeneity and proximity

Accumulator Array (Side View)

Starting peak
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First Origin

Check homogeneity and proximity

Accumulator Array (Side View)

Starting peak

Clustering
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N
o 

of
 L

iD
A

R
 P

oi
nt

s

First Origin

Save and take them out

Accumulator Array (Side View)

Clustering
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First Origin

Repeat same process

Note
Accumulator Array (Side View)

Clustering
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N
o 

of
 L

iD
A

R
 P

oi
nt

s

First Origin

Starting peak

Repeat same process

Accumulator Array (Side View)

Clustering
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Accumulator Array

Clustering
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Clustering

Accumulator Array after Removing the First Cluster
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Accumulator Array after Removing the Second Cluster

Clustering
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Accumulator Array after Removing the Third Cluster

Clustering
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Accumulator Array after Removing the Fourth Cluster

Clustering
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Clustering
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Ambiguity Resolution: Neighborhood analysis using boundary detection

Segmentation Segmentation + 
Neighborhood analysis

Boundary Detection
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starting point

reference line

searching area

minimum angle

reference line

searching area

minimum angle

Modified/Minimum Convex Hull Procedure

Boundary Detection
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Neighborhood analysis is conducted through boundary detection
starting point

space > 2~3 local point spacing 

starting point

Take out and record

Resolving Clustering Ambiguities

Boundary Detection
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segmented points

non-segmented points

Boundaries are expanded while 
checking normal distances between 
candidate points and the defined plane

Boundary Expansion
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Segmentation Example (Imagery)
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Segmentation Example (LiDAR)
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coplanar 
patches

Segmentation Example: Output
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Segmentation Example: Output

Before expanding 
boundaries
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After expanding 
boundaries – no tail

Segmentation Example: Output
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Boundary Expansion

Before expanding After expanding
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Aerial Photo
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Original LiDAR Points
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Ground/Non-Ground Classification

Ground/Non-Ground Points
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Resolves the ambiguity arising from having spatially separated 
but coplanar patches

Boundaries of Segmented Patches

Segmentation Results
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Segmentation Results

Segmentation + Initial 
boundaries

Initial boundary
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Projected LiDAR boundary on an aerial photo

Segmentation Results
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Parameter-Domain Segmentation

Alternative Approach
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Neighborhood 
definition

LPD 
estimation

Attribute 
computation

Aggregation/
clustering

Boundary 
detection

Parameter-domain segmentationParameter-domain segmentation

Parameter-Domain Segmentation
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Parameter-Domain Segmentation

• Neighborhood Definition: A rule that determines the neighbors of each point.
– This definition significantly affects the validity of computed attributes for laser 

point cloud segmentation.

Neighborhood defined by adaptive cylinder



Laser Scanning Ayman F. Habib192

Parameter-Domain Segmentation
• Attribute computation: Estimation of criteria which are used for 

measuring the similarity among a group of points in order to 
abstract the laser point cloud into distinct subsets of points

• Utilized attributes in this research: the coordinates of origin’s 
projection on the best fitting plane to each point’s 3D neighborhood
(X0, Y0, Z0) derived through adaptive cylinder definition. 
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Clustering – Peak Detection
• Usually, cluster detection is carried out using a tessellated 

accumulator array in the parameter/attribute space.
– The quality of the segmentation outcome depends on the cell 

size of the tessellation.
– To avoid this problem, we introduce two different methods for 

peak detection in the attribute space:
 Brute-force approach for peak detection
 Fast approach for peak detection: An octree space partitioning for coarse 

detection followed by a fine detection of the peak.

• For either method, we need to specify the expected spread 
of the cluster in the attribute space (acceptable spatial and 
angular deviation among the attributes of the points in a 
given cluster).
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• Determination of expected cluster extent in attribute space 

The impact of Δα and ∆d on the cluster extent:

Δα Acceptable angular deviation between two planes that 
should be clustered as one plane

Δd Acceptable spatial separation between two parallel planes that 
should be clustered as one plane

Spatial Domain Parameter Domain

Parameter-Domain Segmentation
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X0(m)

Y0(m)

No. of included points = 8

No. of included points = 10

No. of included points = 11

No. of included points = 11
No. of included points = 12

No. of included points = 11

No. of included points = 13
No. of included points = 13
No. of included points = 13

No. of included points = 14No. of included points = 12No. of included points = 8
No. of included points = 6

No. of included points = 9

No. of included points = 6

No. of included points = 7
No. of included points = 7
No. of included points = 7No. of included points = 7No. of included points = 8

No. of included points = 7
No. of included points = 3

No. of included points = 2
No. of included points = 2

Neighborhood with maximum number of points 
(first peak)

No. of included points = 14

Neighborhood with maximum number of points 
(second peak)

No. of included points = 8

Since the number of remaining attribute points is less 
than  the size of the minimum detectable cluster, we 

will stop cluster detection procedure here.

2D representation of brute-force peak detection approach

Note: The radius of the spherical neighborhood changes from one point to the next.

Brute-force Approach for Peak Detection:

Parameter-Domain Segmentation
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X0(m)

Y0(m)

No. of included points = 6

2D representation of coarse peak detection approach

No. of included points = 14

No. of included points = 0

No. of included points = 2

No. of included 
points = 0

No. of included 
points = 0

No. of included 
points = 3

No. of included 
points = 11

No. of included 
points = 10

No. of included 
points = 1

No. of included 
points = 0

No. of included 
points = 0

Fast Approach for Peak Detection: Coarse Peak Detection

Parameter-Domain Segmentation
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2D representation of fine peak detection approach

X0(m)

Y0(m)

No. of included points = 12

No. of included points = 11

No. of included points = 14

No. of included points = 0

No. of included points = 2 No. of included points = 0

No. of included points = 8

Fast Approach for Peak Detection: Fine Peak Detection

Parameter-Domain Segmentation
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Parameter-Domain Segmentation
– Brute-force Approach:

• Advantage: This approach will allow for the detection of the largest 
peak first, which might avoid over segmentation problems.

• Drawback: low computational efficiency

– Fast (Octree-based) Approach:
• Advantage: high computational efficiency

• Drawback: This approach will not guarantee the detection of largest 
peak first, and this may lead to over segmentation problems.
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Brute-force clustering approach 
result

Octree-based clustering approach 
result

Aerial photo

Over-segmentation

Parameter-Domain Segmentation
Results from different peak detection methods:
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Largest gap> Thresholdangle

Boundary Detection: Hybrid Method

Minimum Convex Hull & Angular Gap Approach

For inner holes:
Boundary tracing:  clock-wise
Angle check: counter clock-wise

For outer boundary:
Boundary tracing:  clock-wise
Angle check: clock-wise
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Boundary Detection Results

Orthophoto Boundary detection
Minimum convex hull

Boundary detection
Hybrid method

The hybrid boundary detection is able to trace the boundaries of 
holes inside each cluster.
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Segmentation-Based Ground/Non-Ground Class.

• Starting from the highest segment: segments, which are 
significantly higher than their 2D neighbours, are 
classified as non-ground (B & D).

• Segments, whose area is less than a pre-defined 
threshold, with steep slope are classified as non-ground.
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Segmentation-Based Ground/Non-Ground Class.

• Segments, which are at the same height or higher than 
their 2D non-ground neighbours, are classified as non-
ground (C) – established through an iterative procedure.

• Starting from the lowest segment: Segments whose area 
is larger than a pre-defined threshold, are classified as 
ground (B).

B
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Segmentation-Based Ground/Non-Ground Class.

• Starting from the lowest non-classified segment: If the 
segment is not significantly higher than its 2D nearest 
ground segment, it will be classified as ground – otherwise, 
it will be non-ground (B).

B

• For rough groups, if the majority of the points in the group 
are significantly higher than the 2D nearest ground 
segment, the group will be classified as non-ground (B).

B
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• Orthophoto over the test area

LiDAR Data Classification and Segmentation
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• Original LiDAR data

LiDAR Data Classification and Segmentation



Laser Scanning Ayman F. Habib207

• Segmentation

LiDAR Data Classification and Segmentation
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Non-ground, Rough
Ground, Rough

Non-ground, Planar
Ground, Planar

• Ground/non-ground classification

LiDAR Data Classification and Segmentation
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Experimental Results: Example 1
• Location: Switzerland
• Mission: Airborne
• Mean point density: 6 Pnts/m2

Threshold Value
No. Of neighbouring points for LPD calculation 25
No. Of neighbouring points for best fit plane definition 18
Height of cylinder 0.8 m
Percentage of plane 95%
Δα 10°

Δd 1m
Size of minimum detectable cluster 8 points
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Original Data

Z=557.7m Z=581.1m

The color of each point is determined based 
on its height.
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Approximate Method

0.09p/m2 91.39p/m2

Point Density Map
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Dispersion of the point’s 3D neighbours relative to their centroid

0.12p/m2 90.25p/m2

Point Density Map
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Dispersion of the point’s 3D neighbours relative to the POI

0.17p/m2 90.37p/m2

Point Density Map
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Adaptive Cylinder

0.15p/m2 91.06p/m2

Point Density Map
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Planar Surfaces
Rough Surfaces

Dispersion of the point’s 3D neighbours relative to their centroid

Rough and Planar Points Classification
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Planar Surfaces
Rough Surfaces

Dispersion of the point’s 3D neighbours relative to the POI

Rough and Planar Points Classification



Laser Scanning Ayman F. Habib217

Planar Surfaces
Rough Surfaces

Adaptive Cylinder

Rough and Planar Points Classification
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Each color represents a group of planar
points which is derived using a region
growing algorithm based on local point
density variations

Grouping
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Each color represents a planar cluster of points
which is derived using a developed segmentation
approach.

Segmentation Result (Brute-force Clustering)
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Each color represents a planar cluster of points
which is derived using a developed segmentation
approach.

Segmentation Result (OcTree Search)
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Boundary Detection: Hybrid Approach
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Non-ground, Planar
Ground, Planar
Non-ground, Rough
Ground, Rough

Ground and Non-Ground Classification
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Point density map Segmentation
(brute-force method)

Grouping

Boundary detection G and NG classification

Non-ground, Planar
Ground, Planar
Non-ground, Rough
Ground, Rough

Detailed View (Brute-force Clustering)
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Point density map SegmentationGrouping

Boundary detection G and NG classification

Non-ground, Planar
Ground, Planar
Non-ground, Rough
Ground, Rough

Detailed View (OcTree Search)
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Experimental Results: Example 2
• Location: Rozsa Center, University of Calgary 
• Mission: Terrestrial
• Mean point density: 10608 Pnts/m2

Threshold Value
No. Of neighbouring points for LPD calculation 50
No. Of neighbouring points for best fit plane definition 18
Height of cylinder 0.04 m
Percentage of plane 85%
Δα 20°

Δd 0.2 m
Size of minimum detectable cluster 25 points
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Original Point Cloud

Z=-1.98m Z=17.49m
The color of each point is determined based 
on its height.
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0.04 212850

Point Density Map
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Planar Surfaces
Rough Surfaces

Rough and Planar Points Classification
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Each color represents a group of planar points which is derived
using a region growing algorithm based on local point density
variations.

Grouping
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Segmentation Results
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Boundary Detection: Hybrid Method
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Non-ground, Planar
Ground, Planar

Non-ground, Rough
Ground, Rough

Ground and Non-Ground Classification
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Conclusions
• The proposed segmentation technique is capable of handling point 

cloud data with varying point density, surface slope, and 
orientation.

• Different measures have been introduced to derive meaningful 
Local Point Densities (LPD) for the individual points in datasets, 
which are captured by airborne of terrestrial systems. 

• Computed attributes for  the segmentation procedure take into 
consideration: a) local point density, b) surface trend , and c) noise 
level in the data.

• The peak detection in the attribute space does not employ a 
tessellation scheme, which is commonly used for parameter-domain 
segmentation.

• Two different peak detection techniques have been introduced with 
varying level of computational efficiency.
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Conclusions
• The extent of detected clusters is adaptively changed depending on 

the attributes of such cluster, which makes the segmentation 
outcome independent of the origin location.

• The segmentation approach considers both similarity of attributes as 
well as the proximity of the points associated with these attributes.

• The proposed method  for boundary detection is able to detect the 
boundary of holes inside a cluster.

• QC procedures for evaluating the segmentation outcome have been 
developed.

• The segmentation-based classification approach overcomes the 
defects of point-based classification methods while considering the 
nature of the objects the laser points belong to.
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Quality Control of LiDAR Data 
Segmentation

Planar Feature Segmentation
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Quality Control of LiDAR Data Segmentation
• Objective: Establish a procedure to evaluate the quality 

of the outcome from the segmentation process
• Issues that should be addressed by the quality control 

procedure:
– Ability to check if there is something wrong in the segmentation procedure
– Ability to fix what is wrong

• Quality control procedure:
– Hypothesize different scenarios/problems in the segmentation results
– Develop procedures for detecting/identifying these problems
– Suggest possible actions to remedy these problems
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• Hypothesized segmentation problems:
1. Non-segmented planar points: Points, which have been classified as being 

part of planar surfaces, are not segmented in any of the detected clusters.

• For this scenario, the quality control measure will be derived as follows:

where,
m = the number of non-segmented planar points that have been incorporated into the 

segmented regions as a result of the proposed quality control procedure
n = the total number of non-segmented planar points 

n
mmeasureQC  1 The smaller, the better

Quality Control of LiDAR Data Segmentation
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• Hypothesized segmentation problems:
2. Non-segmented rough points: Points, which have been classified as being 

part of rough surfaces, might belong to one of the segmented planar regions 
(i.e., some of the classified rough points are erroneously classified).

• For this scenario, the quality control measure will be derived as follows:

where,
m = the number of rough points that have been incorporated into the segmented regions 

as a result of the proposed quality control procedure
n = the total number of rough points 

n
mmeasureQC  2 The smaller, the better

Quality Control of LiDAR Data Segmentation
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• Hypothesized segmentation problems:
3. Over-segmentation: A planar surface is segmented into more than one 

segment/cluster.

• For this scenario, the quality control measure will be derived as follows:

where,
m = the number of regions that have been incorporated into other regions as a result of          

proposed quality control procedure
n = the total number of segmented regions

The smaller, the better
n
mmeasureQC  3

Quality Control of LiDAR Data Segmentation
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• Hypothesized segmentation problems:
4. Under-segmentation: Two or more planar surfaces are segmented into one 

segment/cluster.

• For this scenario, the quality control measure will be derived as follows:

where,
m = the number of regions that have been split into several region
n = the total number of segmented regions

n
mmeasureQC  4 The smaller, the better

Quality Control of LiDAR Data Segmentation
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• Hypothesized segmentation problems:
5. Invading/Invaded segments: One segment is invading/being invaded by 

another segment.

• For this scenario, the quality control measure will be derived as follows: 

where,
mi = the total number of points that have been transferred from invading to invaded 

segments
np = the total number of points in segmented regions

p

i

n
mmeasureQC  5 The smaller, the better

Quality Control of LiDAR Data Segmentation
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Segmentation Experimental Results
• Data used: A multi-platform LiDAR dataset from the 

Rozsa Center, University of Calgary, containing:
− Six tripod mounted scans averaging (200 pts/m2 )

− Three airborne laser scans (~ 3 pts/m2 )
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Segmentation Experimental Results
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Segmentation Experimental Results
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Segmentation Experimental Results

Registered multi-platform LiDAR Dataset



Laser Scanning Ayman F. Habib246

Segmentation Experimental Results

Pre-defined Segmentation Thresholds

Threshold Value

Noise level in airborne LiDAR datasets 20 cm

Noise level in terrestrial LiDAR datasets 2 cm

Number of points for reliable plane definition 12 points

Δα 10°

Δd 5 cm

Size of minimum detectable cluster 25 points
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Segmentation Experimental Results

Spatial-domain segmentation result 
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Segmentation Experimental Results

Parameter-domain segmentation result 
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Segmentation Experimental Results

Comparative analysis of spatial-domain and         
parameter-domain LiDAR data segmentation results

Quality control measures Spatial-domain   
segmentation results

Parameter-domain 
segmentation results

Non-segmented planar points N/A 18%

Misclassified non-planar points 14% 5%

Over-segmentation 11% 14%

Under-segmentation 1% 0.8%

Invading/Invaded segments 0% 0%
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Segmentation Experimental Results

Segmentation outcome after quality control procedure
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LiDAR Data Segmentation

Linear Segmentation
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Linear Feature Segmentation
• Detection and segmentation of linear/cylindrical features 

in laser scanning data
‒ Light, traffic, and flag poles
‒ Pipelines
‒ Electrical transmission lines
‒ Electrical transformers and surge arresters
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Linear Feature Segmentation: Literature
• Detection and segmentation of linear/cylindrical features 

in laser scanning data
– Covariance analysis of each point by analysing the Eigen values 

of  the symmetric 3 by 3 matrix containing the centralised 2nd

order moments (Belton and Lichti, 2006;  Gross and 
Thoennessen, 2006) 

– Feature line growing approach based on one manually selected 
seed points  or seed segments (Briese, 2006)

– Extraction of intersection line or boundary lines of segmented 
planar patches (Briese and Pfeifer, 2008)   

– Hough transform based on estimated orientation, position, and 
radius parameters (Rabbani and van den Heuvel, 2005)
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3e

0
0

3

21




− Eigen vector      is along the direction of the line

POICEN

Linear-Feature-Based Point Classification

• Eigen-value Analysis for the classification of points 
belonging to linear features
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Linear-Feature-Based Point Classification 
• Eigen-value Analysis for the classification of points belonging to 

linear features
– Calculate the dispersion matrix for the points in the spherical neighborhood 

relative to the centroid point

– Eigen value decomposition of the dispersion matrix

If 𝜆  𝜆 0 and  𝜆 0, the point of interest (POI) is considered to belong to a 
linear/cylindrical surface.
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𝑒                    𝑒                     𝑒

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

W  Matrix 

8.02(λ 0 0

0 8.02(λ 0

0 0 32.99(λ

Ʌ  Matrix 
X

Z

Y

Cylinder Parameters:
𝑋 , 𝑌 , 𝑍 0  

 𝑢𝑥, 𝑢𝑦 0, 𝑢𝑧 =1,  r = 4

71441 Point,  Z=(1:20)
𝑟 = (0, 0, 10)

𝑒 =(0, 0, 1)

• Principal component analysis (PCA) 

Linear-Feature-Based Point Classification
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Neighborhood size: 
Nearest 50 points 

Points satisfy  
 

0.70

• Principal component analysis (PCA) 

Linear-Feature-Based Point Classification
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Linear Feature Representation 
• Representation of classified linear/cylindrical features

– Typical representation form for a linear/axis of cylindrical feature 












0

0

0

ZtuZ
YtuY
XtuX

Z

Y

X

• (uX, uY, uZ): Directional parameters of linear/cylindrical
features

• (X0, Y0, Z0): Parameters defining the position of a point
on the best-fitted line/cylinder 

• R: Cylinder radius
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Linear Feature Representation
• Selection of appropriate representation form for linear features

– Avoid singularities in linear feature representation

1. Linear/cylindrical features ∦ to XY-plane:

2. Linear/cylindrical features ∦ to YZ-plane:

3. Linear/cylindrical features ∦ to XZ-plane:
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Linear Feature Parameter Estimation
• Precise estimation of linear/cylindrical features attributes

– Adaptive cylinder neighborhood definition: minimizing the squared sum of 
the normal distances between the points in the established 3D neighborhood 
and the linear/cylindrical feature in question

),,,,,,min( 000
1
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n

i
ni i






Laser Scanning Ayman F. Habib261

   
4

)(pnts/m 2

nRr
kLPD




Points along cylindrical featuresPoints along linear features
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Linear Feature Characterization

• Local point density estimation along linear/cylindrical features
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Spatial-Domain Linear Feature Segmentation

Initial classification of linear features using 
Eigen-value analysis

Selection of the appropriate representation of the 
classified linear features

Precise estimation of linear features’ 
parameters using generalized LSA

Spatial-domain segmentation of 
linear/cylindrical features starting from the seed 

points that have been defined by the Eigen 
value/LSA analysis
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Seed Point 

Spherical 
search radius 

based on 
point density 

Normal 
Distance from 

the line

All classified points will be used to re-estimate line/ 
cylinder parameters 

Center line  
defined by the 
Eigen analysis 

and LSA

Center line

Spatial-Domain Linear Feature Segmentation



Laser Scanning Ayman F. Habib264

Spherical 
search radius 

based on 
point density 

Normal 
Distance from 

the line
Center line

The same search/check criteria will be performed 
starting from each classified point

Spatial-Domain Linear Feature Segmentation
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Center line

Spatial-Domain Linear Feature Segmentation

The same search/check criteria will be performed 
starting from each classified point
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X, Y, Z

X, Y, Z

Classified points will be projected onto the best 
defined line to determine the line extreme points    

Spatial-Domain Linear Feature Segmentation
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The search radius is based on the estimated LPD.

Seed 
Point

Region growing methodology for the extraction of linear 
features from the scans 

Spatial-Domain Linear Feature Segmentation
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Parameter-Domain Linear Feature Segmentation

Initial classification of linear features using 
Eigen-value analysis

Selection of the appropriate representation of the 
classified linear features

Precise estimation of linear features’ 
parameters using generalized LSA

Parameter-domain segmentation for isolation of 
points belonging to linear/cylindrical features
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Parameter-Domain Linear Feature Segmentation
• Segmentation of the linear/cylindrical features in the 

parameter domain (uX, uY, uZ, X0, Y0, Z0)
– In order to avoid computational explosion for the 6 dimensional 

parameter space, we try to compute the directional/point-along-
line peaks for each line representation form.

Lines not parallel to
XY-plane

Lines not parallel to
YZ-plane

Lines not parallel to
XZ-plane

Peaks in 
X0/Y0 space

Peaks in 
uX/uY space

Peaks in 
Y0/Z0 space

Peaks in 
uY/uZ space

Peaks in 
X0/Z0 space

Peaks in 
uX/uZ space
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Parameter-Domain Linear Feature Segmentation
• Clustering the attributes in the parameter domains for a given 

representation form:
− Linear/cylindrical features which are not parallel to XY-plane

uX

uY

uZ

3D directional parameter domain

uX

uY

Y

Z

X

2D directional parameter domain

uX

uY
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Parameter-Domain Linear Feature Segmentation
• Clustering the attributes in the parameter domains for a given 

representation form:
− Linear/cylindrical features which are not parallel to XY-plane

x0

y0

X0

`

Y0

Z0

2D point-along-line parameter domain3D point-along-line parameter domain

x0

y0

Y

Z

X
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Quality Control of Linear Feature 
Segmentation

Linear Feature Segmentation
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QC of Linear Feature Segmentation
• Objective: Establish a procedure to evaluate the quality of 

the outcome from the segmentation process
• Issues that should be addressed by the quality control 

procedure:
– Ability to check if there is something wrong in the segmentation 

procedure
– Ability to fix what is wrong

• Quality control procedure:
– Hypothesize different scenarios/problems in the segmentation 

results
– Develop procedures for detecting/identifying these problems
– Suggest possible actions to remedy these problems
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Potential Segmentation Problems
• Hypothesized segmentation problems:

1. Non-segmented linear/cylindrical points: Points, which have 
been classified as being part of linear/cylindrical features, are 
not segmented in any of the detected clusters.

2. Non-segmented rough points: Points, which have been 
classified as being part of rough surfaces, might belong to one 
of the segmented linear/cylindrical features (i.e., some of the 
classified rough points are erroneously classified).

3. Over-segmentation: A linear/cylindrical feature is segmented 
into more than one segment/cluster.

4. Under-segmentation: Two or more linear/cylindrical features 
are segmented into one segment/cluster.
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Linear Features Segmentation Results (1)

Original laser point cloudLocal point density mapEigen-detected linear/cylindrical
Features (red points)
Detected peak in directional

parameter domain (blue points)
Detected peak in point-along-line
parameter domain (green points)

Extracted linear/cylindrical
features
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Eigen-detected linear/cylindrical features (red points)

Original laser dataset

Linear Features Segmentation Results (1)
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Spatial Domain

Linear Features Segmentation Results (1)
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Spatial Domain (after ground removal)

Linear Features Segmentation Results (1)
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Spatial Domain (after ground removal)
After QC

Linear Features Segmentation Results (1)
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Linear Features Segmentation Results (1)

Parameter Domain
After QC
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Quality control measures Parameter-domain   
segmentation results

Spatial-domain
segmentation results

Non-segmented linear points 14% 3%

Misclassified rough points 0% 0%

Over-segmentation 7% 12%

Under-segmentation 2% 4%

Comparative analysis of parameter-domain and        
spatial-domain linear/cylindrical features segmentation results

Linear Features Segmentation Results (1)
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Eigen-detected linear/cylindrical features (red points)

Original laser dataset

Linear Features Segmentation Results (1)
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Spatial Domain

Linear Features Segmentation Results (1)
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Spatial Domain (after ground filtering)

Linear Features Segmentation Results (1)
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Spatial Domain (after ground filtering)
After QC

Linear Features Segmentation Results (1)
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Parameter Domain

Linear Features Segmentation Results (1)

After QC
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Quality control measures Parameter-domain   
segmentation results

Spatial-domain
segmentation results

Non-segmented linear points 7% 3%

Misclassified rough points 0% 0%

Over-segmentation 1% 9%

Under-segmentation 11% 6%

Comparative analysis of parameter-domain and        
spatial-domain linear/cylindrical features segmentation results

Linear Features Segmentation Results (1)
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Linear Features Segmentation Results (1)

Eigen-detected linear/cylindrical features (red points)

Original laser dataset
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Spatial Domain

Linear Features Segmentation Results (1)
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Spatial Domain
After QC

Linear Features Segmentation Results (1)
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Parameter Domain

Linear Features Segmentation Results (1)

After QC
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Quality control measures Parameter-domain   
segmentation results

Spatial-domain
segmentation results

Non-segmented linear points 4% 1%

Misclassified rough points 0% 0%

Over-segmentation 2% 13%

Under-segmentation 3% 5%

Comparative analysis of parameter-domain and        
spatial-domain linear/cylindrical features segmentation results

Linear Features Segmentation Results (1)
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Eigen-detected linear/cylindrical features (red points)

Original laser dataset

Linear Features Segmentation Results (2)
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Spatial Domain

Linear Features Segmentation Results (2)
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Spatial Domain (after ground filtering)

Linear Features Segmentation Results (2)
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Spatial Domain (after ground filtering)
After QC

Linear Features Segmentation Results (2)
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Parameter Domain

Linear Features Segmentation Results (2)

After QC
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Quality control measures Parameter-domain   
segmentation results

Spatial-domain
segmentation results

Non-segmented linear points 0.2% 0%

Misclassified rough points 0% 0%

Over-segmentation 7% 10%

Under-segmentation 9% 5%

Comparative analysis of parameter-domain and        
spatial-domain linear/cylindrical features segmentation results

Linear Features Segmentation Results (2)
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Eigen-detected linear/cylindrical features (red points)

Original laser dataset

Linear Features Segmentation Results (3)
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Spatial Domain

Linear Features Segmentation Results (3)
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Spatial Domain (after ground filtering)

Linear Features Segmentation Results (3)
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Spatial Domain (after ground filtering)
After QC

Linear Features Segmentation Results (3)
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Parameter Domain

Linear Features Segmentation Results (3)

After QC
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Quality control measures Parameter-domain   
segmentation results

Spatial-Domain
segmentation results

Non-segmented linear points 0.5% 0%

Misclassified rough points 1% 0%

Over-segmentation 14% 21%

Under-segmentation 10% 7%

Comparative analysis of parameter-domain and        
spatial-domain linear/cylindrical features segmentation results

Linear Features Segmentation Results (3)
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LiDAR Data Segmentation

Concluding Remarks
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QC of LiDAR Data Segmentation
• Objective: Establish a procedure to evaluate the quality

of the outcome from the segmentation process

Hypothesize different scenarios/problems 
in the segmentation results

Develop procedures for 
detecting/identifying these problems

Suggest possible actions to remedy these 
problems
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QC of LiDAR Data Segmentation

Non-segmented classified points Non-segmented 
rough points

Over-segmentation Under-segmentation

Segmentation 
Problems

Segmented Cluster

Non-seg. 
Planar Point

Misclassified Rough Point

Segmented 
Cluster

Segmented 
Cluster 1

Segmented 
Cluster 2

n1 n2

Under-segmented 
Cluster 

Non-seg. 
cylindrical Point

Segmented Cluster

Misclassified Rough Point

Segmented Cluster

Segmented 
Cluster 1

Segmented
 Cluster 2

U1

U2

Under-segmented 
Cluster
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Concluding Remarks
• LiDAR systems on different platforms will deliver point 

clouds with varying characteristics.
• We need to redefine the local point density to suit the 

needs of LiDAR data processing activities (e.g., 
segmentation and feature extraction).

• This work provided alternatives for the estimation of the 
local point density for planar and linear feature extraction 
procedures.

• The work also presented different techniques for the 
segmentation/extraction of planar and linear features as 
well as the QC of the outcome from this process.
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Current & Future Work
• Current work is focusing on using the extracted features 

for the automated registration of terrestrial laser scans.
• We are also working on comparative analysis of laser 

scanning point clouds and the outcome of image-based 
dense matching techniques.
– Registration of laser scanning and image data
– Correlating the image-based spectral information with the laser-

based positional information

• We are also working on automated feature extraction 
from collected point clouds by a terrestrial mobile laser 
scanning systems for the purpose of road furniture 
inventory. 
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