Chapters 1-4: Summary

- So far, we have been investigating the image acquisition process.
- Chapter 1: General introduction
- Chapter 2: Radiation source and properties
- Chapter 3: Radiation interaction with the lens system
- Factors affecting the precision and the accuracy of the image coordinate measurements
- Chapter 4: Radiation interaction with the light sensitive material along the focal/image plane
- Analog \& digital imaging systems

CE59700: Chapter 5

Vertical Photography

Overview

- Image versus map characteristics
- Vertical photography: definitions and characteristics
- Image scale
- Mathematical relationship between corresponding image and ground coordinates
- Relief displacement

An Image Versus a Map

An Image Versus a Map

- Images have the following properties:
- Perspective projection, and
- Non-uniform scale.
- Maps, on the other hand, have the following characteristics:
- Orthogonal (parallel) projection, and
- Uniform scale.

Perspective Versus Orthogonal Projection

Perspective Projection

Orthogonal Projection

Perspective Versus Orthogonal Projection

Perspective Projection

Orthogonal Projection
http://www.e-topo.com/etoposite/pages/ortho_photography.aspx

Perspective Versus Orthogonal Projection

Perspective Versus Orthogonal Projection

- Perspective Projection
- Orthogonal Projection
http://www.swisstopo.admin.ch/internet/swisstopo/en/home/products/images.html

Vertical Photography

- Optical axis coincides with the plumb line \rightarrow vertical image.

Vertical Photography

- Vertical images are taken with the camera optical axis coinciding with the plumb line (True Vertical Image).
- Nearly Vertical Image: There is a tilt angle between the camera optical axis and the plumb line of $\pm 3^{\circ}$.

Basic Elements of a Vertical Aerial Image

Fiducial Marks in Analog Metric Cameras

(a)

(c)

(b)

(d)

Basic Definitions

- Nadir Point (n): The intersection of the plumb (gravity) line through the perspective center with the image plane.
- Principal Point (PP): The intersection of the normal to the image plane through the perspective center with the image plane.
- The normal to the image plane is assumed to coincide with the optical axis.
- Principal Distance (c): The normal distance between the perspective center and the image plane (compare with the focal length - refer to the lens equation).
- Sometimes, it is denoted as the camera constant.

Basic Definitions

- Flying Height (H): The elevation of the perspective center above the stated datum.
- X-axis of the image coordinate system:
- The line in the image plane through opposite fiducial marks that are almost parallel to the flight direction.
- Y-axis of the image coordinate system:
- The line in the image plane through opposite fiducial marks that are almost normal to the flight direction.

Image Scale

Image Scale

- Image scale: It is the ratio between a distance on the image and the corresponding distance on the ground.
- Since the image is a central projection, it does not have a uniform scale (only one exception exists).
- Image Scale $=\mathrm{ab} / \mathrm{AB}=\mathrm{c} /(\mathrm{H}-\mathrm{h})$ - Assuming vertical photography
- Exception: Vertical image over a flat horizontal terrain has a uniform scale (i.e., it can be used as a map).

Tilt Effect on Image Scale

Vertical photographs

Oblique photographs
http://civisit.com/blog/?p=52

From Image to Ground Coordinates

From Image to Ground Coordinates

- Objective:
- Derive the ground coordinates of object points from the measured coordinates of the corresponding image points.
- Assumptions:
- We are dealing with a vertical image.
- We are dealing with an image captured by frame camera:
- Captured by analog or digital camera
- Analog or digital format
- Diapositive

Frame Camera

- The image footprint is captured through a single exposure.

Negative Versus Positive

Image Coordinate Systems

Flight Direction

- Assumption: principal point coincides with the Fiducial center.

Analog Camera: RC30

http://www.kasurveys.com/Sensors.html

Fiducial Marks in Analog Metric Cameras

(a)

(c)

(b)

(d)

Image Coordinate System: Digital Images

- Digital images can be acquired through either:
- Scanning analog images
- Direct use of digital cameras
- For scanned analog images, the image coordinate system is defined in the same way as analog imagery captured by metric cameras.
- For digital images captured by digital cameras, the image coordinate system is defined by the central row(s) and the central column(s).

Example of Photogrammetric Scanner

http://cmapspublic.ihmc.us/rid=1J5T5YMZV-15ZNLP5-1JMD/Balayeur\ optique.bmp

Digital Camera: DMC ${ }^{\text {TM }}$

http://cmapspublic.ihmc.us/rid=1235786299998_244221932 _24870/Photogramm\%C3\%A9trie\%20-
\%20cam\%C3\%A9ras\%20num\%C3\%A9riques.jpg

CE 59700: Digital Photogrammetric Systems

Digital Images captured by Digital Cameras

Image Coordinates

Pixel to Image Coordinate Transformation

$$
\begin{aligned}
& x=\left(y^{\prime}-n_{c} / 2.0\right) \times y_{\text {_ }} \text { pix_size } \\
& y=\left(n_{r} / 2.0-x^{\prime}\right) \times x_{\text {_ }} \text { pix_size } \\
& \text { where : } \\
& n_{c} \quad \text { Number of columns } \\
& n_{r} \quad \text { Number of rows } \\
& x_{\text {_ }} \text { pix_size Pixel size along the row direction } \\
& y_{\text {_ }} \text { pix _ size Pixel size along the column direction }
\end{aligned}
$$

Ground Coordinate System

Ground Coordinates from Image Coordinates

Ground Coordinates from Image Coordinates

- Assumptions:
- Vertical imagery,
- The image and ground coordinate systems are parallel,
- The origin of the ground coordinate system is vertically below the perspective center, and
- The principal point coincides with the Fiducial center
- From similar triangles, one gets:
$-X_{A}=x_{a}\left(H-h_{A}\right) / c$
$-Y_{A}=y_{a}\left(H-h_{A}\right) / c$

Ground Coordinates from Image Coordinates

Single Photo Positioning?

- Question:
- Can we derive the three-dimensional coordinates of an object point from a single photo?
- Answer:
- No
- We assumed that we know the height of the object point under consideration.

Single Photo Positioning?

Relief Displacement

Relief Displacement

CE 59700: Digital Photogrammetric Systems $=38$
Ayman F. Habib

Relief Displacement

- The shift in the photographic position of an image point caused by the height of the corresponding object point above or below the datum.
- From similar triangles, one gets:
$-d_{a}=r h_{A} / H$
- Relief displacement occurs along the radial direction from the nadir point.
- For vertical imagery over flat horizontal terrain, the effect of relief displacement simulates a uniform change in the scale.

Relief Displacement

- Assumption: nadir point coincides with the Fiducial center.

Relief Displacement

Relief Displacement

Patch from the left image

Patch from the right image

- Where are the principal points?

Relief Displacement

Light pole

Relief Displacement

- Relief Displacement increases with the radial distance.

Relief Displacement

- Relief Displacement is directly proportional to:
- Radial distance from the nadir point, and
- Object height above the datum.
- Relief Displacement is inversely proportional to:
- Flying height above the datum.
- Relief displacement causes occlusion.

Relief Displacement: Characteristics

- Relief displacement is outward for points whose elevations are above the datum (diapositive).
- Relief displacement is inward for points whose elevations are below the datum (diapositive).
- Relief displacement occurs along radial direction from the nadir point of the image.
- For vertical photographs: The nadir point (n), the principal point (PP), and the Fiducial center (FC) are very close to each other.

Relief Displacement: Characteristics

Relief Displacement \& Occlusion

Relief Displacement \& Occlusion

http://www.e-topo.com/etoposite/pages/ortho_photography.aspx

Relief Displacement \& Occlusion

Occluded Area

http://www.e-topo.com/etoposite/pages/ortho_photography.aspx

Relief Displacement \& Occlusion

Relief Displacement \& Occlusion

Relief Displacement \& Occlusion

Patch from the left image

Patch from the right image

- Where are these patches relative to the original images?

Relief Displacement \& Occlusion

