Chapters 1-7: Overview

- Chapter 1: Introduction
- Chapters 2 -4: Data acquisition
- Chapters 5-7: Data manipulation
- Chapter 5: Vertical imagery
- Chapter 6: Image coordinate measurements and refinements
- Chapter 7: Mathematical model and bundle block adjustment
- Collinearity Equations
- Alternative approaches for representing rotation in space
- Projective Transformation
- Direct Linear Transformation (DLT)
- So far, we covered the necessary tools for the manipulation of photogrammetric data for the purpose of object space reconstruction from imagery.

CE 59700: Chapter 8

Theory of Orientation \& Photogrammetric Triangulation

Overview

- Objective: Transform centrally projected images into a three-dimensional model, which we can use to plot an orthogonal map
- Interior orientation
- Exterior orientation:
- Relative orientation
- x versus y-parallax
- Absolute orientation
- Aerial Triangulation: Strip and block triangulation

Theory of Orientation

Theory of Orientation

Image

Theory of Orientation

- The objective of orientation is to transform centrally projected images into a three-dimensional model, which we can use to plot an orthogonal map.
- The three-dimensional model can be obtained through:
- Interior Orientation
- Exterior Orientation

Theory of Orientation

CE 59700: Digital Photogrammetric Systems $=7$
Ayman F. Habib

Interior Orientation

Photography

Interior Orientation

Interior Orientation

Interior Orientation

- Purpose: Reconstruct the bundle of light rays (as defined by the perspective center and the image points) in such a way that it is similar to the incident bundle onto the camera at the moment of exposure.
- Interior orientation is defined by the position of the perspective center w.r.t. the image coordinate system (x_{p}, $\left.y_{p}, c\right)$.
- Another component of the interior orientation is the distortion parameters.

Interior Orientation

Distortion Parameters

- Assumed perspective geometry: The perspective center, the object point, and the corresponding image point are collinear.
- During camera calibration, we try to compensate for all deviations from the assumed perspective geometry:
- Radial Lens Distortion
- De-centering Lens Distortion
- Affine Deformations
- Out of Plane Deformations
- Atmospheric Refraction

Radial Lens Distortion

Radial Lens Distortion

- The light ray changes its direction after passing through the perspective center.
- Radial lens distortion is caused by:
- Large off-axial angle
- Lens manufacturing flaws
- Radial lens distortion occurs along a radial direction from the principal point.
- Radial lens distortion increases as we move away from the principal point.

Radial Lens Distortion

$$
\begin{aligned}
& \Delta x_{\text {Radial Lens Distortion }}=\left(x-x_{p}\right)\left(k_{1} r^{2}+k_{2} r^{4}+k_{3} r^{6}+\ldots\right) \\
& \Delta y_{\text {Radial Lens Distortion }}=\left(y-y_{p}\right)\left(k_{1} r^{2}+k_{2} r^{4}+k_{3} r^{6}+\ldots\right)
\end{aligned}
$$

$$
\text { where: } \mathrm{r}=\left\{\left(\mathrm{x}-\mathrm{x}_{\mathrm{p}}\right)^{2}+\left(\mathrm{y}-\mathrm{y}_{\mathrm{p}}\right)^{2}\right\}^{0.5}
$$

Radial Lens Distortion

Fiducial Center \approx Principal Point

Radial Lens Distortion

—— Without distortions —— With distortions

Pin Cushion Type Radial Lens Distortion

Radial Lens Distortion

—— Without distortions —— With distortions Barrel Type Radial Lens Distortion

Radial Lens Distortion

Lens Cone Assembly

De-centering Lens Distortion

De-centering Lens Distortion

- De-centering lens distortion is caused by misalignment of the elements of the lens system.
- De-centering lens distortion has two components:
- Radial component, and
- Tangential component.

$$
\begin{aligned}
& \Delta x_{\text {Decentering Lens Distorion }}=\left(1+p_{3} r^{2}\right)\left\{p_{1}\left(r^{2}+2 \bar{x}^{2}\right)+2 p_{2} \bar{x} \bar{y}\right\} \\
& \Delta y_{\text {Decentering Lens Distorion }}=\left(1+p_{3} r^{2}\right)\left\{2 p_{1} \bar{x} \bar{y}+p_{2}\left(r^{2}+2 \bar{y}^{2}\right)\right\} \\
& \\
& \text { where: } \mathrm{r}=\left\{\left(\mathrm{x}-\mathrm{x}_{\mathrm{p}}\right)^{2}+\left(\mathrm{y}-\mathrm{y}_{\mathrm{p}}\right)^{2}\right\}^{0.5} \\
& \bar{x}=x-x_{p} \\
& \bar{y}=y-y_{p}
\end{aligned} .
$$

De-centering Lens Distortion

Affine Deformations

- Affine deformations in the focal plane will be manifested as:
- Non-uniform scale along the x and y directions, and
- Non orthogonality between the xy-axes.

$$
\begin{aligned}
& \Delta x_{A D}=-A_{1} x+A_{2} y \\
& \Delta y_{A D}=A_{1} y
\end{aligned}
$$

Affine Deformations

—— Without distortions —— With distortions
CE 59700: Digital Photogrammetric Systems

Atmospheric Refraction

Atmospheric Refraction

- The light ray from the object point to the perspective center passes through layers with different temperature, pressure, and humidity.
- Each layer has its own refractive index.
- Consequently, the light ray will follow a curved not a straight path.
- The distortion occurs along the radial direction from the nadir point.
- It increases as the radial distance increases.

Atmospheric Refraction

- $\Delta \mathrm{r}=\mathrm{kr}\left\{1+\mathrm{r}^{2} / \mathrm{c}^{2}\right\}$
- " k " is the atmospheric refraction coefficient.
- Image points are always displaced outwardly along the radial direction.
- The above equation is only valid for almost vertical photography.

Atmospheric Refraction

$$
k=0.00241\left\{\frac{Z_{o}}{Z_{o}^{2}-6 Z_{o}+250}-\frac{Z^{2}}{Z_{o}\left(Z^{2}-6 Z+250\right)}\right\}
$$

Where:
$Z \& Z_{o}$ are in Km above the sea level

$$
\begin{aligned}
& \Delta x=k x\left(\frac{r^{2}}{c^{2}}+1\right) \\
& \Delta y=k y\left(\frac{r^{2}}{c^{2}}+1\right)
\end{aligned}
$$

CCE 59700: Digital Photogrammetric Systems $=31$

Extended Collinearity Equations

$$
\begin{gathered}
M=R_{m}^{c} \\
x_{a}=x_{p}-c \frac{m_{11}\left(X_{A}-X_{o}\right)+m_{12}\left(Y_{A}-Y_{o}\right)+m_{13}\left(Z_{A}-Z_{o}\right)}{m_{31}\left(X_{A}-X_{o}\right)+m_{32}\left(Y_{A}-Y_{o}\right)+m_{33}\left(Z_{A}-Z_{o}\right)}+d i s t_{x} \\
y_{a}=y_{p}-c \frac{m_{21}\left(X_{A}-X_{o}\right)+m_{22}\left(Y_{A}-Y_{o}\right)+m_{23}\left(Z_{A}-Z_{o}\right)}{m_{31}\left(X_{A}-X_{o}\right)+m_{32}\left(Y_{A}-Y_{o}\right)+m_{33}\left(Z_{A}-Z_{o}\right)}+d i s t_{y} \\
R=R_{c}^{m} \\
x_{a}=x_{p}-c \frac{r_{11}\left(X_{A}-X_{o}\right)+r_{21}\left(Y_{A}-Y_{o}\right)+r_{31}\left(Z_{A}-Z_{o}\right)}{r_{13}\left(X_{A}-X_{o}\right)+r_{23}\left(Y_{A}-Y_{o}\right)+r_{33}\left(Z_{A}-Z_{o}\right)}+d i s t_{x} \\
y_{a}=y_{p}-c \frac{r_{12}\left(X_{A}-X_{o}\right)+r_{22}\left(Y_{A}-Y_{o}\right)+r_{32}\left(Z_{A}-Z_{o}\right)}{r_{13}\left(X_{A}-X_{o}\right)+r_{23}\left(Y_{A}-Y_{o}\right)+r_{33}\left(Z_{A}-Z_{o}\right)}+d i s t_{y}
\end{gathered}
$$

Extended Collinearity Equations

- $\operatorname{dist}_{x}=\Delta \mathrm{x}_{\text {Radial Lens Distortion }}+\Delta \mathrm{x}_{\text {De-centering Lens Distortion }}$
$+\Delta \mathrm{x}_{\text {Atmospheric Refraction }}+\Delta \mathrm{x}_{\text {Affine Deformation }}$ etc....
- dist $_{y}=\Delta \mathrm{y}_{\text {Radial Lens Distortion }}+\Delta \mathrm{y}_{\text {De-centering Lens Distortion }}$ $+\Delta y_{\text {Atmospheric Refraction }}+\Delta y_{\text {Affine Deformations }}$ etc....

Camera Calibration

Camera Calibration

http://www.dpreview.com/reviews/sonydscf828/3

Camera Calibration

- Objective: Recover the camera's internal characteristics
- Coordinates of the principal point $\left(x_{p}, y_{p}\right)$
- Principal distance (c)
- Radial lens distortion
- De-centering lens distortion
- Affine deformations
- Calibration alternatives:
- Laboratory calibration using multi-collimators
- Analytical camera - in situ - calibration (bundle adjustment with self calibration)

Laboratory Camera Calibration

- This method uses a device known as multi-collimator.
- Each collimator consists of a lens with a cross fixed at its plane of infinite focus.
- The collimators are fixed at precisely known angular positions.
- Collimators are arranged in two perpendicular planes with their axes intersecting at the front nodal point of the lens of the calibrated camera.
- The camera is placed with its focal plane perpendicular to the axis of the central collimator.
- The central collimator is aligned along the optical axis of the lens system.

Laboratory Calibration: Multi-Collimators

http://calval.cr.usgs.gov/
=CE 59700: Digital Photogrammetric Systems

Laboratory Calibration: Multi-Collimators

Principal Point Coordinates

- Light rays from the telescopes are directed towards the lens of an aerial camera.
- The crosses are imaged on the camera's focal plane.
- The image of the central cross will be located at the principal point.
- The coordinates of the central cross with respect to the image coordinate system as defined by the Fiducial marks are used as the principal point coordinates.
- $x_{p}=x_{g}$
- $y_{p}=y_{g}$

Image of Photographed Collimator Targets

=CE 59700: Digital Photogrammetric Systems
41
Ayman F. Habib

Principal Distance

- Assuming that the central part of the image is a distortion-free area, one can compute the principal distance as follows:

$$
c=\frac{g f+g h+g s+g t}{4 \tan \theta}
$$

Radial Lens Distortion

- Using the estimated principal distance, one can compute non-distorted distances from the central collimator image to all other collimator images.
- Lens distortion, at a certain radial distance, can be computed as the difference between:
- The measured distance, and
- The calculated distance.
- The radial lens distortion curve can be drawn by plotting the lens distortion versus the radial distance.

Analytical Camera Calibration

- Capture imagery over a test-field (sufficient number of GCPs should be available).
- Measure image coordinates (GCPs and tie points).
- Perform bundle adjustment and solve for:
- The ground coordinates of tie points,
- The EOPs of involved imagery, and
- The IOPs of involved camera/cameras.
- Caution:
- Make sure that we have enough number of GCPs.

Analytical Camera Calibration

CE 59700: Digital Photogrammetric Systems $=$

3-D Calibration Test Field

2-D Calibration Test Field

Sample Calibration Images

Sample Calibration Image

Exterior Orientation

Exterior Orientation

- Exterior Orientation has two components:
- The position of the perspective center w.r.t. the ground coordinate system ($\mathrm{X}_{\mathrm{o}}, \mathrm{Y}_{\mathrm{o}}, \mathrm{Z}_{\mathrm{o}}$), and
- The rotational relationship between the image and the ground coordinate systems (ω, ϕ, κ).
- These are the rotation angles we need to apply to the ground coordinate system to make it parallel to the image coordinate system.

Exterior Orientation

Exterior Orientation

Exterior Orientation of a Stereo-Pair

After establishing the IO

Exterior Orientation of a Stereo-Pair

CE 59700: Digital Photogrammetric Systems

Exterior Orientation of a Stereo-Pair

- Exterior Orientation of a stereo-pair is defined by twelve parameters.
$-X_{o p} Y_{o p} Z_{o p} \omega_{l}, \phi_{l}, \kappa_{l}$
$-X_{o,}, Y_{o r}, Z_{o r}, \omega_{r}, \phi_{r}, \kappa_{r}$
- Exterior Orientation of a stereo-pair can be decomposed into:
- Relative Orientation - RO (five parameters), and
- Absolute Orientation - AO (seven parameters).

Relative Orientation

Relative Orientation - RO

- Objective: Orient the two bundles of a stereo-pair relative to each other in such a way that all conjugate light rays intersect.
- Result: A stereo-model, which is a 3-D representation of the object space w.r.t. an arbitrary local coordinate system.
- If we make at least five conjugate light rays intersect, all the remaining light rays will intersect at the surface of the stereo-model.

Relative Orientation - RO

- Concept: Force conjugate light rays to intersect

Relative Orientation - RO

Relative Orientation - RO

Relative Orientation - RO

x-parallax \& y-parallax

x-parallax \& y-parallax

- Two conjugate light rays will be separated at any projection plane (DD').
- This separation can be decomposed into:
- x-parallax (along the base connecting the two perspective centers), and
- y-parallax (along the perpendicular direction).
- x-parallax is responsible for depth perception.
- During relative orientation, we clear the y-parallax.

x-Parallax \& Height

=CE 59700: Digital Photogrammetric Systems

Relative Orientation of a Stereo-Pair

- Question:
- Do we need ground control points to establish the relative orientation?
- Answer:
- No
- Question:
- What do we need to establish the relative orientation?
- Answer:
- Measure the image coordinates of at least five tie points (why)

Relative Orientation of a Stereo-Pair

- For a stereo-pair, we have twelve degrees of freedom to position and orient the two bundles of a stereo-pair in space.
$-X_{o l}, Y_{o l}, Z_{o p}, \omega_{1}, \phi_{1}, \kappa_{l}$
$-X_{o_{\mathrm{r}}}, \mathrm{Y}_{\mathrm{or}_{\mathrm{r}}}, \mathrm{Z}_{\mathrm{or}_{\mathrm{r}}}, \omega_{\mathrm{r}}, \phi_{\mathrm{r}}, \kappa_{\mathrm{r}}$
- These twelve parameters establish the relative and absolute orientation of that stereo-pair.
- The absolute orientation establishes the ground coordinate system (datum).

Relative Orientation of a Stereo-Pair

- The ground coordinate system is defined by:
- Origin (three parameters),
- Orientation in space (three parameters), and
- Scale (how long is one unit along the axes of this coordinate system - one parameter).
- For relative orientation, we can define any arbitrary coordinate system (model coordinate system).

Relative Orientation of a Stereo-Pair

- Therefore, we need to fix seven parameters (out of the twelve) to any arbitrary values.
- During relative orientation, we solve for the remaining five parameters.
- Alternatives for Relative Orientation (RO) include:
- Dependent Relative Orientation, and
- Independent Relative Orientation.

Dependent Relative Orientation

- Fix the following parameters to any arbitrary values:
$-X_{o p}, Y_{o p}, Z_{o p}, \omega_{1}, \phi_{1}, \kappa_{1}, X_{o_{r}}$
- Solve for:
$-Y_{o_{r}}, Z_{o_{r}}, \omega_{r}, \phi_{r}, \kappa_{r} \equiv b_{y}, b_{z}, \omega_{r}, \phi_{r}, \kappa_{r}$

Dependent Relative Orientation

- Determine $b_{y}, b_{z}, \omega_{r}, \phi_{r}, \kappa_{r}$

Independent Relative Orientation

- Fix the following parameters to any arbitrary values:
$-\mathrm{X}_{\mathrm{op}}, \mathrm{Y}_{\mathrm{op}}, Z_{\mathrm{op}}, \omega_{\mathrm{l}}, \mathrm{X}_{\mathrm{or}}, \mathrm{Y}_{\mathrm{or}_{\mathrm{r}}}, \mathrm{Z}_{\mathrm{or}}$
- Solve for:
- $\phi_{\mathrm{l}}, \kappa_{\mathrm{k}}, \omega_{\mathrm{r}}, \phi_{\mathrm{r}}, \kappa_{\mathrm{r}}$

Independent Relative Orientation

- Determine $\phi_{1}, \kappa_{1}, \omega_{\mathrm{r}}, \phi_{\mathrm{r}}, \kappa_{\mathrm{r}}$

Relative Orientation: Coplanarity Model

- Another alternative for estimating the relative orientation among the images of a stereo-pair is the Coplanarity model.
- Refer to Chapter 8 - Addendum 1 for:
- The mathematical model for the Coplanarity Equation
- The Computer Vision (CV) equivalent of the Coplanarity Equation
- Fundamental Matrix
- Essential Matrix

Absolute Orientation

Absolute Orientation

Absolute Orientation

- Purpose: Rotate, scale, and shift the stereo-model (resulting from relative orientation) until it fits at the location of control points
- Absolute orientation is defined by:
- Three rotations,
- One scale factor, and
- Three shifts.
- The absolute orientation is described mathematically by a 3-D similarity transformation.

Absolute Orientation

Absolute Orientation: Mathematical Model

$$
\left[\begin{array}{c}
X_{G} \\
Y_{G} \\
Z_{G}
\end{array}\right]=\left[\begin{array}{c}
X_{T} \\
Y_{T} \\
Z_{T}
\end{array}\right]+S R(\Omega, \Phi, \mathrm{~K})\left[\begin{array}{c}
X_{M} \\
Y_{M} \\
Z_{M}
\end{array}\right]
$$

- A control point, with known ground and model coordinates, yields three equations.
- A minimum of three control points (two full and one vertical) should be available to solve for the seven parameters of the absolute orientation.
- These points should not be collinear.
- In this case, the roll angle across the line defined by the control points cannot be determined.

Photogrammetric Triangulation

Photogrammetry: The Reconstruction Process

- The main objective of photogrammetry is to derive ground coordinates of object points from imagery.
- We would like to investigate the feasibility of performing this task using single image, stereo-pair, or more.
- The mathematical model we are going to use is the collinearity equations.

Single Photograph

- An image point is defined by its coordinates relative to the image coordinate system.
- We have two equations (collinearity equations) in three unknowns (ground coordinates of the corresponding object point - Best Case Scenario).
- IOPs \& EOPs are available.
- Consequently, this problem is under determined.
- Conceptually: An image point will define a single (infinite) light ray.
- The object point can be anywhere along this light ray.

Single Photograph

Stereo Photogrammetry

- We have the same point appearing in two images.
- We have four equations (two collinearity equations in each image).
- We have three unknowns (ground coordinates of the corresponding object points - Best Case Scenario).
- IOPs \& EOPs are available.
- Thus, we have a redundancy of one (which will contribute towards the computation of the ROP).
- Conceptually: The two image points define two light rays.
- The object point is the intersection of these light rays.

Stereo Photogrammetry

Stereo Photogrammetry

From Images to Object Space

From Images to Object Space

- For a stereo-pair, we can derive a 3-D representation of the object space covered by the overlap area as follows:
- Perform RO of the stereo-pair under consideration (using at least five conjugate/tie points) \rightarrow stereo-model
- Using some GCPs, we can rotate, scale, and shift the stereomodel (AO) until it fits at the location of the ground control points (i.e., the residuals at the GCPs are as small as possible).
- For the absolute orientation, we need at least three GCPs (those points should not be collinear).

Aerial Triangulation

- Objective:
- How can we reconstruct the object space from imagery without the need for three ground control points in each stereo-model?
- Alternatives:
- Strip Triangulation,
- Block Adjustment of Independent Models (BAIM), and
- Bundle Block Adjustment (Covered in Chapter 7)

Strip Triangulation

Strip Triangulation

Strip Triangulation

- Procedure:
- Perform RO of the first stereo-model (DRO or IRO)
- Perform AO of the first stereo-model using 3GCPs
- Perform RO for the second-model using only DRO
- We do not want to disturb the orientation parameters for the second image.
- Only scale is required to establish the AO for the second model.
- Adjust the base until a point in the overlap area between the first and second models have the same elevation
- For the remaining models, repeat the above three steps.

Strip Triangulation

Strip Triangulation

- Error Propagation:
- Similar to an open traverse, errors will increase as the length of the strip increases.
- Solution:
- Implement GCPs every three or four models, and
- Apply corrections polynomials
- Correction Polynomials:
- They are used to reduce the difference between the photogrammetric and geodetic coordinates of the control points.

Correction Polynomials

\triangle Photogrammetric Points
\triangle Geodetic Control Points

Correction Polynomials

$$
\begin{aligned}
Z_{g}-Z_{p} & =a_{o}+a_{1} X+a_{2} Y+a_{3} X Y \\
-\mathrm{Zg} & \equiv \text { Geodetic Ground Coordinates } \\
-\mathrm{Zp} & \equiv \text { Photogrammetric Ground Coordinates }
\end{aligned}
$$

- Using ground control points, we can solve for the polynomial coefficients.

Block Adjustment

Block Adjustment

Block Adjustment of Independent Models

Block Adjustment of Independent Models

- Procedure:
- Perform RO (DRO or IRO) for all the stereo-models in the project
- The models are simultaneously rotated, scaled, and shifted until:
- The tie points among adjacent models fit together as well as possible, and
- The residuals at the locations of the ground control points are as small as possible.

BAIM: Concept

BAIM: Concept

- Tie Point
\triangle Control Point

Before BAIM

Mathematical Model (BAIM)

Mathematical Model (BAIM)

$$
\left[\begin{array}{c}
X_{G} \\
Y_{G} \\
Z_{G}
\end{array}\right]=\left[\begin{array}{c}
X_{T} \\
Y_{T} \\
Z_{T}
\end{array}\right]+S R(\Omega \Phi, \mathrm{~K})\left[\begin{array}{c}
X_{M} \\
Y_{M} \\
Z_{M}
\end{array}\right]
$$

Mathematical Model (BAIM)

$$
\left[\begin{array}{c}
X_{M} \\
Y_{M} \\
Z_{M}
\end{array}\right]=1 / S R^{T}(\Omega \Phi, \mathrm{~K})\left[\begin{array}{c}
X_{G}-X_{T} \\
Y_{G}-Y_{T} \\
Z_{G}-Z_{T}
\end{array}\right]
$$

Example (BAIM)

- Tie Point
Δ Control Point

Before BAIM

Example (BAIM)

- What is the balance between the observations and unknowns?
- Unknowns:
- 4*7 AO parameters
- 5 * 3 GC of tie points
- Total of 43
- Equations:
- 4 (models) x 4 (points $/$ model) x 3 (equations/point) $=48$
- Redundancy:
- 5
- This is a non-linear system: Approximations and partial derivatives are required.

BAIM: Adjustment Model

- $\mathrm{Y}=\mathrm{a}(\mathrm{X})+\mathrm{e}$

$$
\mathrm{e} \sim\left(0, \sigma^{2} \mathrm{P}^{-1}\right)
$$

- Using approximate values for the unknown parameters $\left(\mathrm{X}^{\circ}\right)$ and partial derivatives, the above equations can be linearized leading to the following equations:
- $\mathrm{y}_{48 \times 1}=\mathrm{A}_{48 \times 43} \mathrm{x}_{43 \times 1}+\mathrm{e}_{48 \times 1} \quad \mathrm{e} \sim\left(0, \sigma^{2} \mathrm{P}^{-1}\right)$
- Assignment: Illustrate the structure of
- The design matrix and the observation vector, and
- The normal equation matrix (N) and normal equation vector (c)

Bundle Block Adjustment

- Direct relationship between image and ground coordinates
- We measure the image coordinates of selected features in the images of the block.
- Using the collinearity equations, we can relate the image coordinates, the corresponding ground coordinates, the IOPs, and the EOPs.
- Using simultaneous least squares adjustment, we can solve for the:
- The ground coordinates of tie points,
- The EOPs, and
- The IOPs - if needed (Bundle Adjustment with Self Calibration - BASC).

Bundle Block Adjustment

- The image coordinate measurements and the IOPs define a bundle of light rays.
- The EOPs define the position and the attitude of the bundles in space.
- During the adjustment: The bundles are individually rotated (ω, ϕ, κ) and shifted ($\mathrm{X}_{\mathrm{o}}, \mathrm{Y}_{\mathrm{o}}, \mathrm{Z}_{\mathrm{o}}$) until:
- Conjugate light rays intersect as well as possible at the locations of object space tie points, and
- Light rays corresponding to ground control points pass through the object points as close as possible to the measured ground coordinates.

Bundle Block Adjustment

A Ground Control Points

- Tie Points

