Basic Principles of Linear Algebra

Matrices and Vêctors

- A Matrix is a rectangular array of numbers arranged in rows and columns.
- For example, the dimensions of the matrix below are 2×3 (read "two by three"), because there are two rows and three columns.

$$
\left[\begin{array}{lll}
1 & 3 & 7 \\
8 & 6 & 9
\end{array}\right]
$$

- A column vector or column matrix is an $m \times 1$ matrix (i.e., a matrix consisting of a single column of m elements).
$\left[\begin{array}{l}3 \\ 5 \\ 9\end{array}\right]$

Transpose of aMatind

- Given a matrix $\mathrm{A}: \mathrm{A}=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right]$ with m rows and n columns
- The transpose of the matrix is expressed as follows:
$-A^{T}=\left[\begin{array}{cccc}a_{11} & a_{21} & \ldots & a_{m 1} \\ a_{12} & a_{22} & \ldots & a_{m 2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1 n} & a_{2 n} & \ldots & a_{m n}\end{array}\right]$ with n rows and m columns

Symmetric andESkew Marices

- A symmetric matrix is a square matrix where $a_{i j}=a_{j i}$
$-A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 5\end{array}\right]$
$-A=A^{T}$
- A skew symmetric matrix is a square matrix where $a_{i j}=-a_{j i}$ \& diagonal elements are zeros
$-A=\left[\begin{array}{ccc}0 & 2 & -3 \\ -2 & 0 & 6 \\ 3 & -6 & 0\end{array}\right]$
$-A^{T}=-A$
- The inverse of an invertible square matrix A is represented as A^{-1}
- $A A^{-1}=A^{-1} A=$ Identity Matrix
- $I_{n}=\left[\begin{array}{ccc}1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1\end{array}\right]_{n \times n}$
- Inverse of a symmetric matrix is a symmetric matrix

Magnitude of a Vector

- Given a vector: $\vec{u}=\left[\begin{array}{l}u_{x} \\ u_{y} \\ u_{z}\end{array}\right]$
- Its magnitude (norm) $\|\vec{u}\|=\sqrt{\left(u_{x}^{2}+u_{y}^{2}+u_{z}^{2}\right)}$

Matrix Addition ${ }^{88}$

- Matrix addition is the operation of adding two matrices by adding the corresponding entries together.
- Two matrices must have an equal number of rows and columns to be added. The sum of two matrices A and B will be a matrix, which has the same number of rows and columns as do A and B.

$$
\begin{aligned}
A+B= & {\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]+\left[\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 n} \\
b_{21} & b_{22} & \ldots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{m 1} & b_{m 2} & \ldots & b_{m n}
\end{array}\right]=} \\
& {\left[\begin{array}{cccc}
a_{11}+b_{11} & a_{12}+b_{12} & \ldots & a_{1 n}+b_{1 n} \\
a_{21}+b_{21} & a_{22}+b_{22} & \ldots & a_{2 n}+b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1}+b_{m 1} & a_{m 2}+b_{m 2} & \ldots & a_{m n}+b_{m n}
\end{array}\right] }
\end{aligned}
$$

Matrix Multiplicâtion

- Matrix multiplication or matrix product is a binary operation that produces a matrix from two matrices.

$$
\begin{aligned}
& x_{12}=a_{11} b_{12}+a_{12} b_{22} \\
& x_{33}=a_{31} b_{13}+a_{32} b_{23}
\end{aligned}
$$

Dot Product of Two Vect rs

- Given two vectors: $\vec{u}=\left[\begin{array}{l}u_{x} \\ u_{y} \\ u_{z}\end{array}\right]$ \& $\vec{v}=\left[\begin{array}{l}v_{x} \\ v_{y} \\ v_{z}\end{array}\right]$
- The dot product of these two vectors is expressed as follows:
$-\vec{u} \odot \vec{v}=u_{x} * v_{x}+u_{y} * v_{y}+u_{z} * v_{z}=\|\vec{u}\|\|\vec{v}\| \cos \theta$
- If the two vectors are orthogonal, the dot product is zero.
- If the two vectors are parallel, the dot product reduces to the product of their norms.

Cross Product of Two Ve tors

- Given two vectors: $\vec{u}=\left[\begin{array}{l}u_{x} \\ u_{y} \\ u_{z}\end{array}\right]$ \& $\vec{v}=\left[\begin{array}{l}v_{x} \\ v_{y} \\ v_{z}\end{array}\right]$
- The cross product of the two vectors is expressed as follows:
$-\vec{w}=\vec{u} \times \vec{v}=\left[\begin{array}{ccc}i & j & k \\ u_{x} & u_{y} & u_{z} \\ v_{x} & v_{y} & v_{z}\end{array}\right]=\left[\begin{array}{c}u_{y} v_{z}-u_{z} v_{y} \\ -u_{x} v_{z}+u_{z} v_{x} \\ u_{x} v_{y}-u_{y} v_{x}\end{array}\right]$, where i, j, and k are the unit vectors along the x, y, and z axes, respectively.
$-\vec{w}=\left[\begin{array}{ccc}0 & -u_{z} & u_{y} \\ u_{z} & 0 & -u_{x} \\ -u_{y} & u_{x} & 0\end{array}\right]\left[\begin{array}{c}v_{x} \\ v_{y} \\ v_{z}\end{array}\right]=\left[\begin{array}{c}u_{y} v_{z}-u_{z} v_{y} \\ -u_{x} v_{z}+u_{z} v_{x} \\ u_{x} v_{y}-u_{y} v_{x}\end{array}\right]=\hat{\vec{u}} \vec{v}$
$-\vec{w}=\left[\begin{array}{ccc}0 & v_{z} & -v_{y} \\ -v_{z} & 0 & v_{x} \\ v_{y} & -v_{x} & 0\end{array}\right]\left[\begin{array}{l}u_{x} \\ u_{y} \\ u_{z}\end{array}\right]=\left[\begin{array}{c}u_{y} v_{z}-u_{z} v_{y} \\ -u_{x} v_{z}+u_{z} v_{x} \\ u_{x} v_{y}-u_{y} v_{x}\end{array}\right]=\hat{\vec{v}}^{T} \vec{u}$
$-\|\vec{w}\|=\|\vec{u}\|\|\vec{v}\| \sin \theta$
$-\vec{w} \perp \vec{u} \& \vec{w} \perp \vec{v}$

Vector Connecting tiwo oints

- Given two points in 3D space, which are defined by the following vectors ($\overrightarrow{\boldsymbol{A}}$ and $\overrightarrow{\boldsymbol{B}}$):

$$
\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right] \text { and }\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]
$$

- Then, the vector connecting the two points will be defined as:

$$
\overrightarrow{\boldsymbol{A B}}=\overrightarrow{\boldsymbol{B}}-\overrightarrow{\boldsymbol{A}}=\left[\begin{array}{l}
b_{x}-a_{x} \\
b_{y}-a_{y} \\
b_{z}-a_{z}
\end{array}\right]
$$

Resultant and Vectorist mation

- The resultant is the vector sum of two or more vectors.
- It is the result of adding two or more vectors together.
- If displacement vectors $\overrightarrow{\boldsymbol{A}}, \overrightarrow{\boldsymbol{B}}$, and $\overrightarrow{\boldsymbol{C}}$ are added together, the result will be vector $\overrightarrow{\boldsymbol{R}}$.

Vector Notations

Rotation Matricês

- In Photogrammetry, we are dealing with two distinct coordinate systems:
- Camera coordinate systems, and
- Mapping coordinate systems.
- The camera and mapping coordinate systems are not necessarily parallel.
- The derivation of the collinearity equations would require the summation of vectors related to the camera and mapping coordinate systems.
- Vectors summation/subtraction cannot be performed unless they are represented relative to the same coordinate systems.
- Vectors represented in different coordinate systems can be transformed to common coordinate system using a rotation matrix.
- Therefore, we need to establish the rotation matrix relating the camera and mapping coordinate systems.

Rotation Matrix ${ }^{5}$ Notation

Collinearity Equations

$$
\begin{gathered}
R=R_{c}^{m} \\
x_{a}=x_{p}-c \frac{r_{11}\left(X_{A}-X_{o}\right)+r_{21}\left(Y_{A}-Y_{o}\right)+r_{11}\left(Z_{A}-Z_{o}\right)}{r_{13}\left(X_{A}-X_{o}\right)+r_{23}\left(Y_{A}-Y_{o}\right)+r_{33}\left(Z_{A}-Z_{o}\right)}+d i s t_{x} \\
y_{a}=y_{p}-c \frac{r_{12}\left(X_{A}-X_{o}\right)+r_{22}\left(Y_{A}-Y_{o}\right)+r_{32}\left(Z_{A}-Z_{o}\right)}{r_{13}\left(X_{A}-X_{o}\right)+r_{23}\left(Y_{A}-Y_{o}\right)+r_{33}\left(Z_{A}-Z_{o}\right)}+d i s t_{y}
\end{gathered}
$$

Involved parameters:

- Image coordinates ($\mathrm{x}_{\mathrm{a}}, \mathrm{y}_{\mathrm{a}}$)
- Ground coordinates (A_{A}, Y_{A}, Z_{A})
- Exterior Orientation Parameters - EOPs $\left(X_{O}, Y_{O}, Z_{O}, \omega, \phi, \kappa\right)$
- Interior Orientation Parameters - IOPs (x_{p}, y_{p}, c, and the coefficients describing dist $_{x}$ and dist $_{y}$)

Collinearity Equations

- In the collinearity equations, the observed image coordinates are expressed as nonlinear function of the:
- Ground coordinates $\left(\mathrm{A}_{\mathrm{A}}, \mathrm{Y}_{\mathrm{A}}, \mathrm{Z}_{\mathrm{A}}\right)$,
- Exterior Orientation Parameters - EOP $\left(X_{O}, Y_{O}, Z_{O}, \omega, \phi, \kappa\right)$, and
- Interior Orientation Parameters - IOP (x_{p}, y_{p}, c, and the coefficients describing dist ${ }_{x}$ and dist $)_{y}$).
- One should note that the rotation angles ω, ϕ, κ are those that need to be applied to the X, Y, and Z-axes, respectively, of the mapping coordinate system to make it parallel to the camera coordinate system.
- Bundle Adjustment is an approach used to solve for the ground coordinates of tie points, EOP of the images, and IOP of the used camera(s).
- BASC (Bundle Adjustment with Self Calibration) is provided to solve for such parameters (ground coordinates of tie points, EOP of the images, and IOP of the used camera).

