

Basic Principles of Linear Algebra

Matrices and Vectors

- A Matrix is a rectangular array of numbers arranged in rows and columns.
- For example, the dimensions of the matrix below are 2×3 (read "two by three"), because there are two rows and three columns.

$$\begin{bmatrix} 1 & 3 & 7 \\ 8 & 6 & 9 \end{bmatrix}$$

• A column vector or column matrix is an $m \times 1$ matrix (i.e., a matrix consisting of a single column of m elements).

Transpose of a Matrix

• Given a matrix A:
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$
 with m rows and n columns

• The transpose of the matrix is expressed as follows:

$$-A^{T} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix}$$
 with n rows and m columns

Symmetric and Skew Matrices

• A symmetric matrix is a square matrix where $a_{ij} = a_{ji}$

$$-A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 5 \end{bmatrix}$$
$$-A = A^{T}$$

• A skew symmetric matrix is a square matrix where $a_{ij}=-a_{ji}$ & diagonal elements are zeros

$$-A = \begin{bmatrix}
0 & 2 & -3 \\
-2 & 0 & 6 \\
3 & -6 & 0
\end{bmatrix}$$

$$-A^T = -A$$

Inverse of a Matrix

- The inverse of an invertible square matrix A is represented as A^{-1}
- $AA^{-1} = A^{-1}A = Identity\ Matrix$

•
$$I_n = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix}_{n \times n}$$

• Inverse of a symmetric matrix is a symmetric matrix

Magnitude of a Vector

• Given a vector:
$$\vec{u} = \begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix}$$

• Its magnitude (norm)
$$\|\vec{u}\| = \sqrt{\left(u_x^2 + u_y^2 + u_z^2\right)}$$

Matrix Addition

- Matrix addition is the operation of adding two matrices by adding the corresponding entries together.
- Two matrices must have an equal number of rows and columns to be added. The sum of two
 matrices A and B will be a matrix, which has the same number of rows and columns as do A and
 B.

$$A + B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix} =$$

$$\begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

Matrix Multiplication

 Matrix multiplication or matrix product is a binary operation that produces a matrix from two matrices.

$$x_{12} = a_{11}b_{12} + a_{12}b_{22}$$

 $x_{33} = a_{31}b_{13} + a_{32}b_{23}$

Dot Product of Two Vectors

• Given two vectors:
$$\vec{u} = \begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix}$$
 & $\vec{v} = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$

- The dot product of these two vectors is expressed as follows:
 - $\vec{u} \odot \vec{v} = u_x * v_x + u_y * v_y + u_z * v_z = ||\vec{u}|| ||\vec{v}|| \cos\theta$
 - If the two vectors are orthogonal, the dot product is zero.
 - If the two vectors are parallel, the dot product reduces to the product of their norms.

Cross Product of Two Vectors

• Given two vectors:
$$\vec{u} = \begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix} \& \vec{v} = \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix}$$

• The cross product of the two vectors is expressed as follows:

$$- \vec{w} = \vec{u} \times \vec{v} = \begin{bmatrix} i & j & k \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{bmatrix} = \begin{bmatrix} u_y v_z - u_z v_y \\ -u_x v_z + u_z v_x \\ u_x v_y - u_y v_x \end{bmatrix}, \text{ where } i, j, and k \text{ are the unit vectors along the x, y,}$$

and z axes, respectively.

$$-\overrightarrow{w} = \begin{bmatrix} 0 & -u_z & u_y \\ u_z & 0 & -u_x \\ -u_y & u_x & 0 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = \begin{bmatrix} u_y v_z - u_z v_y \\ -u_x v_z + u_z v_x \\ u_x v_y - u_y v_x \end{bmatrix} = \widehat{\overrightarrow{u}} \overrightarrow{v}$$

$$- \vec{w} = \begin{bmatrix} 0 & v_z & -v_y \\ -v_z & 0 & v_x \\ v_y & -v_x & 0 \end{bmatrix} \begin{bmatrix} u_x \\ u_y \\ u_z \end{bmatrix} = \begin{bmatrix} u_y v_z - u_z v_y \\ -u_x v_z + u_z v_x \\ u_x v_y - u_y v_x \end{bmatrix} = \hat{\vec{v}}^T \vec{u}$$

$$-\|\vec{w}\| = \|\vec{u}\| \|\vec{v}\| \sin \theta$$

$$-\vec{w} \perp \vec{u} \& \vec{w} \perp \vec{v}$$

Vector Connecting Two Points

• Given two points in 3D space, which are defined by the following vectors (\overrightarrow{A}) :

$$\begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$
 and $\begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix}$,

• Then, the vector connecting the two points will be defined as:

$$\overrightarrow{AB} = \overrightarrow{B} - \overrightarrow{A} = \begin{bmatrix} b_x - a_x \\ b_y - a_y \\ b_z - a_z \end{bmatrix}$$

$$B(b_x, b_y, b_z)$$

$$\overrightarrow{AB}$$

$$A(a_x, a_y, a_z)$$

Resultant and Vector Summation

- The resultant is the vector sum of two or more vectors.
- It is the result of adding two or more vectors together.
- If displacement vectors \vec{A} , \vec{B} , and \vec{C} are added together, the result will be vector \vec{R} .

$$\vec{R} = \vec{A} + \vec{B} + \vec{C} = \begin{bmatrix} a_x + b_x + c_x \\ a_y + b_y + c_y \\ a_z + b_z + c_z \end{bmatrix}$$

Vector Notations

Rotation Matrices

- In Photogrammetry, we are dealing with two distinct coordinate systems:
 - Camera coordinate systems, and
 - Mapping coordinate systems.
- The camera and mapping coordinate systems are not necessarily parallel.
- The derivation of the collinearity equations would require the summation of vectors related to the camera and mapping coordinate systems.
- Vectors summation/subtraction cannot be performed unless they are represented relative to the same coordinate systems.
- Vectors represented in different coordinate systems can be transformed to common coordinate system using a rotation matrix.
- Therefore, we need to establish the rotation matrix relating the camera and mapping coordinate systems.

Rotation Matrix Notation

Collinearity Equations

$$R = R_c^m$$

$$x_a = x_p - c \frac{r_{11}(X_A - X_o) + r_{21}(Y_A - Y_o) + r_{11}(Z_A - Z_o)}{r_{13}(X_A - X_o) + r_{23}(Y_A - Y_o) + r_{33}(Z_A - Z_o)} + dist_x$$

$$y_a = y_p - c \frac{r_{12}(X_A - X_o) + r_{22}(Y_A - Y_o) + r_{32}(Z_A - Z_o)}{r_{13}(X_A - X_o) + r_{23}(Y_A - Y_o) + r_{33}(Z_A - Z_o)} + dist_y$$

Involved parameters:

- Image coordinates (x_a, y_a)
- Ground coordinates (A_A, Y_A, Z_A)
- Exterior Orientation Parameters EOPs (X_O, Y_O, Z_O, ω, φ, κ)
- Interior Orientation Parameters IOPs $(x_p, y_p, c, and the coefficients describing <math>dist_x$ and $dist_y$)

Collinearity Equations

- In the collinearity equations, the observed image coordinates are expressed as nonlinear function of the:
 - Ground coordinates (A_A, Y_A, Z_A),
 - Exterior Orientation Parameters EOP (X_O, Y_O, Z_O, ω, φ, κ), and
 - Interior Orientation Parameters IOP $(x_p, y_p, c, and the coefficients describing <math>dist_x$ and $dist_y$).
- One should note that the rotation angles ω , ϕ , κ are those that need to be applied to the X, Y, and Z-axes, respectively, of the mapping coordinate system to make it parallel to the camera coordinate system.
- Bundle Adjustment is an approach used to solve for the ground coordinates of tie points, EOP of the images, and IOP of the used camera(s).
- BASC (Bundle Adjustment with Self Calibration) is provided to solve for such parameters (ground coordinates of tie points, EOP of the images, and IOP of the used camera).

