Verification of Plate Model in MEMOSA

Shankhadeep Das, Sanjay Mathur and Jayathi Y. Murthy Purdue University

Objective: To Implement FVM-Based Plate Model in MEMOSA Using Mindlin-Reissner Plate Theory

- Implement FVM-based plate model to study deformation of thin membranes
- Use Mindlin-Reissner plate theory
- Implement fully implicit second order discretization of the governing equations
- Verify the accuracy of the solver for a number of canonical test problems
- Verify that locking behavior is not observed for high aspect-ratio structures
- Use the plate model to study pull-in voltages in RF MEMS devices

Plate Model Overview

- Solve for vertical deflections and rotations about x and y axes
- Balance moments about x and y axes and force in the z-axis

$$\sum M_{x} = 0$$

$$\sum M_{y} = 0$$

$$\sum F_{z} = 0$$

- Plate model accurately predicts deflection at the free end for both thick and thin plates
- Errors decrease by factor of 4 as mesh is refined by factor of 2
- Confirms second order spatial discretization

-2	-1.5	-1	-0.5	
	ln (de	eltax)		
Percentage deflection cantilever	ge errors at the fr	in FVM ee end o	solution f of the	or

Mesh	L/h = 10	L/h = 100
5x5	0.497	0.5
10x10	0.124	0.125
20x20	0.031	0.031
40x40	0.008	0.008

All-Clamped Plate

- Poisson's ratio 0.3
 No locking behavior is observed
- for high aspect-ratio plates
- Deformation in the plate is accurately predicted over the entire range of aspect ratios

Non-dimensional deflection in the plate

Non-dimensional deflection for 40x40 mesh

Transient Vibration of Fixed-Fixed Plates

					_			
			Thickness			2 um		
		Yc	Young's modulus		200 GPa			
		F	Poisson's ratio			0		
			Density			7854 Kg/m ³		
	Notural							
					Frequency (Hz)			
			Analytical			6.497x10 ⁴		
			FVM			6.485x10 ⁴		
Frequency accurately calculated								
Deflection (x10 ⁻¹⁰ m) vs timestep								
	Tin			Δt (x10 ⁻⁹ s)				
	Time (us)	5		2.5	1.25	
		25 -8.64		-8.64166	5	-8.66507	-8.67684	
19	$p = \left[\frac{1}{\ln(r_{21})} \right] \left[\ln \left \frac{w_3 - w_2}{w_2 - w_1} \right \right] = 0.992$							
	The order temporal convergence fate							

Pull-In Voltage in RF MEMS

Top Electrode details					
Length	400 um				
Thickness	4 um				
Young's modulus	200 GPa				
Poisson's ratio	0				
Mesh	40x40				

Conclusions and Future Work

- Fully-implicit Mindlin-Reissner theory based FVM solver for plate bending analysis has been developed
- The solver does not show any instance of shear locking in thin plates
- It has second order spatial rate of convergence and first order temporal rate of convergence
- Residual stress model implemented within the plate model framework
- The solver over-predicts pull-in voltages in RF MEMS devices by around 3.5% due to absence of non-linear stretching effects

[1] S. Das, S.R. Mathur, and J.Y. Murthy, "Finite Volume Method for Structural Analysis of RF MEMS Devices using Theory of Plates," Numerical Heat Transfer, Part B: Fundamentals, accepted

Residual Stress				
Top Electrode	Voltage (V)	Residual Stress (MPa)	Deflection at plate center (um)	
V Bottom V			Plate Model	Memshub
	100	0	-0.2159	-0.2148
Electrode = All Oup		50	-0.1188	-0.1182
Plate Model accurately predicts	160	0	-0.6903	-0.6868
deflection in presence of residual stress		50	-0.3348	-0.3332

PURDUE UNIVERSITY

Discevery Park