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ESBGK Solver Development 
Å Unified finite-volume method (FVM) approach for continuum and rarefied domains.  

Å Formulated a strictly conservative ESBGK discretization within discrete-ordinate method.  

Å First ever unsteady 3D-3V deterministic parallel kinetic solver.  
 

Code Development: 

Å 4 main classes:  Quadrature, Distribution Function Fields, Macroparameters and 

KineticFlowModel and their swig wrapper files. 

Å 3 Discretization classes: Collision Term discretization, Time derivative discretization and 

Convection discretization;  

Å 2 Boundary classes: KineticBoundary Conditions, Generic Kinetic BCS :Boundary conditions 

implemented: zero-gradient; consisting of ESBGK models diffuse wall; symmetry; real-wall with 

accommodation ů; far pressure-inlet/outlet 

Å~4,500 LOC for ESBGK classes;  Tecplot output script using mpi4py for visualization of macro 

parameters, restart files. 

Å In collaboration with Sanjay Mathur (MEMOSA FVM), Gazi Yildirim (parallel infrastructure), 

Ben Pax (3D meshing), Andrew Weaver (testing and verification) 
 

Code Verification: 

Å Time and spatial discretization,wall BC by analytical solution for 0D unsteady, 1D & 2D steady 

Å Parallel 2D damping with spatial domain decomposition  by comparison with steady ESBGK.  

Å Parallel 3D damping run tested on up to 512 processors on HERA.  



3 

Macroscopic Properties: 
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Å finite-volume discretization in physical space (x,y,z) 

Å discrete ordinate in velocity space (u,v,w)  

Å up to 16th-order Gauss-Hermite quadrature in velocity magnitude,   3/8th rule in velocity 

angles.  

Å solution of linearized equation at each discrete velocity ordinate with Algebraic Multi-Grid 

Method (AMG solver) in Memosa. 
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Fig 1: Velocity meshes  
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Spatial Grids 

Figure 2 a) Non-uniform Cartesian Mesh b) Unstructured Triangular Mesh 

c) Quadrilateral Split Triangular Mesh 
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Incoming f  stored in boundary cell  

and used as dirchlet bc 

 

 

Outgoing f  updated using extrapolation bc 

For each velocity ordinate 

 

 

 

ESBGK Solution Algorithm 

Å Create linear system  

Å Apply Dirchlet or extrapolation bc 

Å Solve with AMG 

Update macroparameters 

Check sum(residual) < tolerance 

For each timestep 

For each iteration 

Set boundary conditions (wall, pressure inlet, 

symmetry,etc) 

Yes 

Update time 

 wall number density is calculated  

from the conservation of mass flux 

 

 

Where           are given wall  

temperature and velocity 
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Å BGK Equation  (Gaussian) 

 

 

 

 

Å ES-BGK Equation    

           (Anisotropic Gaussian) 

Conservative 3D Discretization of Collision Term 
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Ref: R. Bidkar et al., Unified Theory of Gas Damping of Flexible Microcantilevers at Low Ambient Pressures, APL., Vol. 

94, 163117 (2009).  

 Figure 4 a) Damping factors from 2D unsteady simulations and comparison with experiments Ref.[4], b) 

pressure contours and streamlines for P0=0.66Pa and c) variation of damping force with time over 4 cycles 

Free Cantilever Damping 

Velocity Grid = 10×10×10 

Spatial Grid =50x50 



Large-Displacement Damping in Capacitive RF 
MEMS Switch 

Å Steeneken et al, ñDynamics and 
squeeze film gas damping of a 
capacitive RF MEMS switchò, 
JMM, 2005: experimental 
measurements of squeeze film 
damping at 1 atm N2 

Å For large z, experimentally 
measured and squeeze film 
damping based on Reynolds 
equation agree:  

ÅWith ñno-slipò continuum 
predictions during switch 
opening (for Kn<0.25) 

Å With ñslipò predictions during 
switch closing (for  
0.06<Kn<0.2)   

Å Kink at z=230 nm is attributed to 
membrane/dielectric contact 
phenomena. 

Opening 

Closing 

No-Slip 

Slip 
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Fig 8: Pressure contours comparisons for varying beam direction 

of motion, for  V=0.8m/s and 2.44m/s, Kn=0.14 

Fig 9: Contours of Knudsen number based on local mean-free path and gap-

size for V=0.8m/s and 2.44m/s, Kn=0.14 

Speed = 0.8m/s 

Speed = 2.44m/s 

Large-Displacements Damping: Nonlinear Effects 



Å At  velocities 0.1m/s the difference in 

damping force between up and down 

moving beams is 5%; increases to >200% 

for velocity of 2.44m/s.  

Å For a constant velocity magnitude of 

0.8m/s, this difference changes from 60% 

to almost 90% when the pressure is 

reduced by 10.  

Å Convergence rates are much lower for 

beams moving downward with high 

velocities.  

Å Non-linear effects such as the direction 

of motion on damping should be taken 

into account  while constructing damping 

models of MEMS devices with large 

displacement and contact. 
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Fig 10: Damping force for upward and downward 

moving beam simulations at different velocities and 

comparison with popular linear models .  Ref [1-3]  

Velocity Grid = 10×10×10 

Spatial Grid =50x50 

Kn=0.14 

ESBGK Model: Guo, Alexeenko,  JMM (2009). 

RE-NSSJ: Veijola, T., JMM 14, 2004. 

RE-DSMC: Gallis, M, Torczynski, J., JMEMS 13 2004.  

Large-Displacements Damping: Nonlinear Effects 



Fig11: a) initial mesh    b) Deformed mesh  

Å 3D ESBGK simulations of Gen 5 PRISM device damping near pull-out (1 ɛm gap)   

Å The  beam velocity obtained from the PRISM coarse-grained model is specified as 

boundary condition for the ES-BGK MEMOSA solver. 

Å 3D spatial mesh was deformed by Moving-mesh  model using given deflection.   

3D Damping Simulations for Gen5 PRISM 

Device: Mesh Generation 

Fig12: Deflection and velocity of beam  

predicted by prism coarse-grain model 

 Minimum gap-size = 1.02 ɛm, 

 Max downward velocity 

=9.6cm/s  

g = 1.02 ɛm  

g = 4 ɛm  

  

L = 400m m

w= 120m m

t = 2m m

g = 4m m
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 Fig13: Spatial domain decomposition on 8 processors 



160x mm=

40x mm=

Å Most of domain in 

transitional and 

rarefied region due 

to small gap 

Velocity Grid = 10×10×10 

Spatial Grid =60x60x40 

1.4 million cells 

4.2 billion unknowns 

Fig 15: X-velocity contours at y=0.5ɛm. Note: min gap=1.0 ɛm 

3D ESBGK Results for PRISM Device  

Fig 14: Local Knudsen number based on gap-size 
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Å X-velocity direction: 

towards the center 

below the beam. 

 

Å Full 3D damping has 

extra degree of 

freedom, therefore  

lower damping force 

than 2D 



Comparison with 2D 

Å  Top slice at y=2.5 ɛm  

Å Stream traces at 

x=160 ɛm show effect 

of x-velocity under the 

beam 

2D 
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3D 

160x mm=

40x mm=

80x mm=

Full 3D damping predicts higher pressure 

and hence lower damping force than 2D 

2D 

3D 
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Lagrangian-Eulerian methods for fluid-structure interaction are based 

on conformal meshes and require  incessant, time-consuming re-

meshing. Fixed-grid methods provide antidote to re-meshing and the 

Immersed Boundary Method (IBM) has recently found increasing use 

for microflows as well as turbulent flows [Ref. 1,2] 

 

 

 

 

 

Main Objectives: Develop immersed boundary method formulation for Boltzmann 

ESBGK equations and apply to transient, large displacement, gas damping 

simulations of MEMS switch with opening and closing gaps. 

Immersed Boundary Method Formulation for 

the ES-BGK Equations 

 Unsteady micro-scale flows within moving 

solids of complex geometries with large-

scale deformation and high dynamic rate 

displacement require unsteady fluid-

structure interaction modeling.  

[1]L. Sun, S. R. Mathur, J. Y. Murthy, Num. Heat Trans., Part B. Fund., Vol. 58, No. 4 , Oct 2010 

[2] D. J. Rader, M. A.  Gallis, and J. R. Torczynski DSMC moving-Boundary Algorithms for Simulating MEMS 

Geometries with Opening and Closing Gaps,] 

2D 
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Figure 19:  Schematic of Domain 

 Argon gas 

L=1.1, Kn=0.08 

dx=0.05, RMSerror= 7% 

Analytical solution 

Velocity Grid = 14×14×14 

Spatial Grid = 22 
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Figure 18 :1D BGK Code Verification 


