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ABSTRACT 
     This work examines the quality factors (Q factors) of 
resonance associated with the axial and transverse vibrations of 
single-wall carbon nanotube (SWCNT) resonators through the 
use of molecular dynamics (MD) simulation. Specifically, the 
work investigates the effect of device length, diameter, and 
chirality, as well as temperature, on the resonant frequency and 
quality factor of these devices, and benchmarks the results of 
MD simulation against classical theories of energy dissipation. 
Of note are the facts that the quality factors associated with 
transverse vibration decrease with increasing device diameter 
and are largely insensitive to chirality.  Additionally, quality 
factors increase with increasing device length for transverse 
vibrations, but remain almost constant for axial vibrations. The 
predicted size dependence of the quality factors associated with 
axial vibration agrees well with classical theory, if the nanoscale 
size effect of thermal conductivity is properly accounted for. 
However, the size dependence of the quality factors associated 
with transverse vibrations deviates significantly from classical 
theory. 
 
INTRODUCTION 
    Since their discovery in 1991 [1], carbon nanotubes 
(CNTs) have become the cynosure of nanotechnology with 
considerable efforts being made to explore their thermal, 
mechanical, electrical, and optical properties. One emergent 
application of CNTs is in resonant nanoelectromechanical 
systems (NEMS) [2-4], where they can be used as enabling 
elements in sensors, oscillator circuits, and electromechanical 
signal processing systems [5-7].  The distinct utility of CNTs 
in these applications stems in large part from their high elastic 
modulus, low mass density, and high natural frequencies, which 
are typically in the GHz-THz range [8].   

    Generally speaking, the performance of a CNT resonator is 
constrained by the rate of energy dissipation associated with the 
device, which is commonly measured in terms of quality factor 
(Q). In most applications, a high Q is essential to optimizing 
performance metrics, such as device sensitivity or selectivity; 
and hence developing a complete understanding of dissipation 
in NEMS resonators is essential.  
    In electromechanical resonators, energy dissipation  can 
occur through a wide variety of mechanisms [9]. Amongst these 
mechanisms are intrinsic processes, such as thermoelastic 
dissipation (TED) [10], dissipation due to electron-phonon 
interactions, and dissipation due to phonon-phonon interactions 
[11]. These mechanisms are inherent in any material and thus 
are omnipresent in any functional device. In contrast, there are 
extrinsic processes that occur due to interactions with the 
device’s surrounding environment, such as fluidic damping and 
clamping losses [12]. These effects can be at least partially 
mitigated if proper care is taken in the course of device design 
and packaging.  
    It is important to note that a small number of prior works 
have considered the sources and impact of various dissipation 
mechanisms in CNT resonator, using experimental, analytical 
and numerical approaches. For example, Huttel et al. 
experimentally investigated the Q factors of resonance 
associated with the transverse vibration of suspended CNTs at 
low temperatures [13]. Likewise, a series of works have 
considered the temperature dependence of quality factor using 
molecular dynamics (MD) simulation [14, 15]. For example, in 
[4], Jiang et al. calculated the quality factors associated with the 
flexural vibration of CNTs and observed a T-0.36 dependence, 
which deviates from classical theory. They also estimated that 
energy losses would in fact increase with temperature for 
double-walled carbon nanotubes because of interlayer 
interactions [14].  
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    Despite the efforts noted above, to the best of the authors’ 
knowledge, no prior works have investigated the impact of 
resonator size on energy dissipation in carbon nanotubes. This 
work seeks to remedy this apparent deficiency, by studying the 
effect of CNT size (length and diameter) on the quality factors 
of resonance (Q) associated with both transverse and axial 
vibrations through the use of MD simulations.  These results 
are subsequently benchmarked against classical theory to 
highlight where further analytical efforts may be required. 

 
METHODOLOGY                                                                                 
    As noted in the introduction, extrinsic sources of 
dissipation, such as fluid dissipation, can be largely mitigated 
through careful device design and packaging (Note that though 
clamping losses can be minimized through geometric design, 
they are largely unavoidable), as such, this effort focuses on the 
dominant intrinsic sources of dissipation, namely TED and 
phonon-phonon effects (which are significant at high temper-
atures). To investigate these dissipation mechanisms, the work 
specifically considers a cantilevered SWCNT, which is fixed at 
one end and free at the other, in the absence of an adjacent 
substrate and surrounding medium, as shown in Figure 1. 

 

Figure 1. A REPRESENTATIVE SINGLE-WALL CARBON 
NANO TUBE. THE DIRECTIONS OF THE RESULTANT 
FORCES APPLIED DURING THE COURSE OF ANALYSIS 
ARE HIGHLIGHTED. 
 
    The covalent bonds between the carbon atoms which 
compose the system highlighted in Fig. 1 are modeled using 
adaptive intermolecular reactive empirical bond order 
(AIREBO) potentials [16], which have been shown in prior 
work to reproduce the elastic and thermal properties of CNT’s 
with a high degree of accuracy [17]. Device dynamics are 
simulated through the use of MD simulations founded upon the 
LAMMPS package [18]. In each simulation, the CNT is 
equilibrated to a desired temperature in an NVT ensemble using 
a Nose Hoover thermostat for 100 ps with a 1 fs time step. The 
ensemble is then changed to a micro-canonical form (NVE) 
where the total energy of the system is kept constant. A force is 
subsequently applied on all of the atoms at the tip of the CNT in 
either the transverse or axial direction, depending on the 
dominant vibration mode of interest, for half the time taken for 
one cycle of oscillation. The force is then removed and the CNT 
is allowed to freely oscillate. Note that in order to ensure 
vibrations remain within a linear response regime; the applied 

forces are constrained to lead to a maximum elongation of 10% 
of device length.   
    The resonant frequency associated with the dominant 
mode of vibration is obtained from a Fourier transform of the 
time variation of the kinetic (or potential) energy.  These are 
compared with closed-form expressions for the axial and 
transverse mode resonant frequencies, which are derived from 
elasticity theory: 
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Here, E represents Young’s modulus, ρ represents mass density, 
l is the length of the CNT resonator, I and A are the cross-
sectional moment of inertia and area of the device respectively. 
Note that the radius of gyration associated with the system is 

defined according to K = I A .  

    To compute the Q factors associated with the system of 
interest, variations in temperature, potential energy and 
displacement are considered as a function of time during the 
course of free vibration. In the scenario considered here, the 
external mechanical energy decays with time due to 
thermoelastic and phonon-phonon effects and is converted into 
internal energy, i.e., lattice energy (temperature). To quantify 
this effect, the variation of the displacement of the center of 
mass (COM) of the entire CNT in three space is used to 
calculate the root mean square (RMS) centroidal displacement, 
and subsequently Q.  This procedure was previously utilized 
by Blencowe et al. [19]. Assuming linearity and a single 
dominant mode of vibration, the decay of the RMS 
displacement with time follows an exponential curve (e-ζωt) 
which can be fit to calculate Q (Q=1/2ζ).  Here ζ is the 
damping ratio and ω is the angular frequency of vibration 
(which is equivalent to 2π multiplied by half the resonant 
frequency value obtained from the FFT of the kinetic energy). Q 
can also be calculated using external energy decay, as 
previously reported by Jiang et al. [14]. However, at high 
temperatures, the fluctuations in external energy are of the same 
order as the decay, making it hard to observe the decay clearly. 
By using the RMS of displacement of the center of mass, such 
problems do not occur, and fitting the exponential curve at high 
temperatures is straightforward. Accordingly, the RMS method 
has been adopted here, despite the fact that it offers limited 
value in the investigation of axisymmetric radial expansion or 
contraction. Note that to minimize statistical fluctuations, five 
independent MD simulations are performed and the results are 
averaged to generate each data point. 
 
RESULTS AND DISCUSSION 
    In Figure 2, the dependence of frequency on length and 
diameter for both axial and transverse vibrations at 10 K is 
shown. Both of these trends follow the classical theory closely: 
frequency is inversely proportional to device length for axial 

   (1) 
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vibrations and to the square of device length for transverse 
vibrations; it is independent of diameter for axial vibrations and 
directly proportional to the radius of gyration for transverse 
vibrations.   
   

     
 
                             

     
 
 
 
 
 
 

The value of E calculated from the above expressions using the 
frequency values obtained from the fast Fourier transform 
(FFT) is approximately 900 GPa, which agrees with previously 
reported values obtained through MD simulations and 
molecular mechanics [20, 21]. Also of note is the fact that the 
arrangement of carbon atoms, armchair or zigzag, does not 
noticeably affect the resonant frequency. This is likely 
attributable to the fact that the elastic moduli of CNTs are 
largely independent of chirality [20]. Additionally, the 
frequency of both transverse and axial modes increases slightly 
(up to 3%) with temperature. This is in contrast to other 
materials for which frequency decreases with temperature. This 
is due to the negative coefficient of thermal expansion (CTE) in 
both the axial and radial directions associated with CNTs [22].  
 
Axial-Mode Vibrations 
    Figure 3 shows the variation of quality factor (Q) with 
temperature for two distinct CNT diameters and two associated 
chiralities. Note that (5,5) and (9,0) CNTs have diameters which 
are quite close to one another, and are approximately half of 
those associated with (10,10) and (17,0) CNTs. As evident, Q  
 

    
 
 
 
   
 
decreases by approximately two orders of magnitude when 
temperature increases from 10 K to 300 K for each of the 
geometries considered. Additionally, it can be seen that the Q 
does not change significantly with chirality as long as the 
diameter is kept approximately constant. Q is also relatively 
independent of the orientation of atoms. Figure 4 details the Q 
associated with axial (longitudinal) mode CNT vibrations as a 
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Figure 2. VARIATION OF RESONANT FREQUENCY WITH 
RESPECT TO SIZE. (A) RESONANT FREQUENCY AS A 
FUNCTION OF LENGTH, (B) RESONANT FREQUENCY AS 
A FUNCTION OF DIAMETER  
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Figure 3. QUALITY FACTOR AS A FUNCTION OF 
CHIRALITY FOR AXIAL VIBRATIONS 
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function of length and diameter  It is observed that Q is largely 
independent of length for (10,10) CNTs, as highlighted in 
Figure 4A, for a variety of different temperatures. As the length 
increases from 4 nm to 16 nm, the Q remains approximately 
constant. Potential reasons for this behavior are discussed later.  
 

     

    
    
    
 
 

 
Figure 4B highlights Q for axial vibrations as a function of 

diameter at different temperatures for an 8 nm long CNT. The 

diameters 0.68 nm, 1.36 nm and 2.04 nm correspond to 
armchair CNTs of chiralities (5,5), (10,10), (15,15) respectively 
does not appreciably alter Q, except at low temperatures.  

At 10 K, Q decreases by 40% as the diameter increases 
from 0.68 nm to 1.36 nm; as the diameter increases further to 
2.04 nm, the Q increases again. On the whole, Q for axial mode 
oscillations does not vary with size significantly at least in the 
domain size considered here. Of the various sources of energy 
dissipation mentioned in the introduction, only TED is believed 
to be the dominant mechanism in the range of temperatures 
considered here. Note that Lifshitz et al. have proposed 
alternative approaches, but none of them are verified to be true 
[11]. TED is caused by changes in vibratory volume which 
results in inhomogeneous temperature changes [10]. The 
resulting temperature gradients induce heat flow which causes 
the conversion of mechanical vibration energy into thermal 
energy. Landau and Lifshitz [29] derived an expression for Q 
for longitudinal oscillations of a bar given by 
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where ω is the resonant frequency of the axial mode, κ is 
thermal conductivity, T is temperature, α is the coefficient of 
thermal expansion (CTE), ρ is mass density and C is heat 
capacity per unit volume. As per this equation, Q should be 
independent of diameter and chirality for axial vibrations 
because the parameters κ, α, C vary only slightly with diameter. 
Furthermore, as shown in Figure 2, ω is independent of 
diameter. If one considers length dependence, ω varies as 1/L 
and all other parameters in Equation (2) are constant with 
length except for thermal conductivity (κ). Since, the domain 
lengths considered here are much less than the mean free path, κ 
increases with length almost linearly from 4 nm to 16 nm 
because of the finite size effect [17, 23]. This implies that the 
product of κ and ω will remain almost constant. Thus, Q should 
be approximately constant with length, which matches our 
observations in Figure 4. However, a slight deviation from this 
behavior is observed at 10 K and the reasons for this are not yet 
clear. Once the diffusive regime is reached, (i.e., for lengths 
greater than the mean free path) κ no longer increases with 
length; thus one would expect the quality factor to decrease 
with increasing length in this limit. To the best of the authors’ 
knowledge, no experiments have been done on nanoscale axial 
mode vibrations to verify this behavior. In summary, the Q for 
axial mode vibrations is independent of size (at least within the 
parameter ranges considered herein) and increases with 
decreasing temperature. 
 
Transverse-Mode Vibrations 

The procedure described above is repeated for transverse 
mode vibrations, wherein the force is applied perpendicular to 
the axis of CNT. As highlighted by Figure 5, the Q for 
transverse mode vibrations is found to be independent of 
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Figure 4. VARIATION OF QUALITY FACTOR FOR AXIAL 
VIBRATIONS WITH SIZE (A) Q AS A FUNCTION OF 
LENGTH (B) Q AS A FUNCTION OF DIAMETER 
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chirality. Only the diameter of the CNT affects the quality factor 
of transverse mode vibration but not its chirality.  Figure 6 
shows the variation of Q with increasing diameter for a variety 
of temperatures. It is clear that Q in this case decreases with 
increasing diameter for all of the temperatures under 
consideration. The decrease of Q with diameter at high 
temperatures is demonstrated in Figure 6B. The dependence of 
Q on diameter (b) follows the power law:   

     

 
 

 
 
 
 
But the dependence of size (length & diameter) is stronger in 
the case of transverse mode vibrations unlike the axial. Q ~ b-µ 
where µ varies between 1.4 and 1.6. In other words, the 
damping increases with frequency. Figure 7 shows the variation 
of Q for the transverse mode of vibration as a function of length 
for a (10,10) CNT. It can be seen that Q increases with length in 
this case. As can be seen in this figure, for various temperatures, 
Q increases with length as per the law: Q ~ Lθ where θ varies 
from 1 to 1.5. Both of these trends are in contrast with the 
trends observed for the case of axial vibrations. TED can play a 
significant role in this case as well since temperature gradients 
are developed across the diameter due to alternating tensile and 
compressive forces. This results in an irreversible loss of 
mechanical energy.  

Zener studied TED (dubbed internal friction) in flexural 
vibrations in 1938, and in a series of papers [24-27] derived an 
expression for QTED for a rectangular beam given by: 
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Where E is Young’s modulus, α is coefficient of thermal 
expansion, Cp is specific heat, T0 is the temperature.  

                                                                       

 
 
                 

 
   
 
 
 
 

 
   The relaxation time (τz) is given by 
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Figure 5. VARIATION OF QUALITY FACTOR WITH 
CHIRALITY FOR TRANSVERSE VIBRATIONS 
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Figure 6. VARIATION OF QUALITY FACTOR WITH 
DIAMETER FOR TRANSVERSE VIBRATIONS (A) AT 
ALL TEMPERATURES UNDER CONSIDERATION (B) AT 
HIGH TEMPERATURES (ZOOMED VIEW) 
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Here b is the width (approximated as diameter here) of the 
beam and χ (= κ/ρC) is the thermal diffusivity of the solid. 

 
 

 
 
 
 
 
 
The values of relaxation time and its product with 

frequency, for transversely vibrating CNTs of different 
chiralities and 4 nm length are listed in Table 1. 
 
Table 1. VALUES OF FREQUENCY AND RELAXATION TIMES 

FOR DIFFERENT CHIRALITIES 
 Chirality   ω (THz)    τz (fs) ωτz (x10-3) 

  (5,5)   0.181   3.258   3.706 

 (10,10)   0.308    13.032   25.22 

 (15,15)   0.394   29.324   72.594 
 
 In the domain size considered, the product ωτz is less than 

1, which means that relaxation time is shorter than the period of 
oscillation, implying that the oscillations are isothermal. 
Increasing the length decreases the product further where as 
increasing the diameter could get the value closer to unity. With 
this approximation, the expression for Q in Equation (3) 
reduces to 
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Based on Equation (3), Photiadis et al. predicted that Q 

will increase with temperature because of the change in sign of 
CTE [28], but this trend was not reflected in their experiments. 
Even though CNTs also exhibit a change of sign in CTE as 
temperature increases [22], such anomalous behavior of Q with 
temperature is also not observed in simulation. As per Equation 
(4), Q should decrease rapidly with increasing diameter since Q 
~ 1/b2. This is especially true given that the resonant frequency 
(which is directly proportional to diameter) is also inversely 
proportional to Q. From the results presented here, Q is 
observed to have a weaker dependence on diameter (~ 1/b1.5) 
than expected. Lifshitz et al. proposed that the relaxation time 
varies linearly with diameter (τ ~ b/ν, where ν is the phonon 
group velocity) rather than quadratically [10], within the 
ballistic range, which might help explain this deviation; but 
there is no comprehensive justification in this regard. Similar 
deviations are seen in the dependence of Q on length. Here, 
frequency is the only term which varies with length; therefore 
one would expect Q to increase quadratically with that 
parameter (~ L2). However, the observed dependence is only 
linear (~ L). This could be a byproduct of multimode contribut- 
ions or increased coupling between axial and transverse modes 
of vibration. A more rigorous spectral analysis has to be done to 
gain more insights in this direction. Finally it should be noted 
that the authors have also looked at phonon-phonon dissipation 
and the inclusion of that effect doesn’t seem to offer a better 
correlation between theory and simulation.  

   
In summary, to obtain higher Q for transverse mode 

vibrations, devices of high aspect ratio (L/D); i.e., larger length 
and smaller diameter, should be utilized at low temperatures. 

 
CONCLUSIONS 
In summary, this work has considered the Qs associated with 
axial and transverse mode vibrations in CNTs of different 
lengths and diameters using MD. Though there has been 
speculation in the literature that Q may increase with 
temperature, such behavior has not been observed. Simulation 
results indicate that resonant frequencies scale with size, in the 
same manner as predicted by classical theory. The values of Q 
obtained for axial oscillations were largely independent of size 
and agreed well with Landau’s classical theory. The authors 
speculate that Q changes with length in the diffusive regime, but 
this must be verified through future simulations. In the case of 
transverse mode oscillations, Q was shown to be quite sensitive 
to the dimensions of the system. Variations with size were 
observed to be in qualitative, but not quantitative, agreement 
with Zener’s classical theory of TED. The authors conclude that 

  (4) 

Length (nm) 

 Q
u

al
ity

 F
ac

to
r 

(Q
) 

Figure 7. VARIATION OF QUALITY FACTOR WITH 
LENGTH FOR TRANSVERSE VIBRATIONS 
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none of the existing classical theories are successful in fully 
explaining these unusual scaling laws.  
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