Agriculture News

February 1, 2016  

Transgenic plants' 'die and let live' strategy dramatically increases drought resistance

Zhao rice

Yang Zhao, a research assistant in horticulture, found that engineering rice to produce high levels of the protein PYL9 can improve the crop's drought survival rate by 40 percent. (Purdue Agricultural Communication photo/Tom Campbell)
Download Photo

WEST LAFAYETTE, Ind. - Purdue University researchers found that engineering plants to produce high levels of a protein known as PYL9 dramatically boosted drought tolerance in rice and the model plant Arabidopsis.

Under severe drought conditions, the transgenic plants triggered the death of their old leaves - a process known as senescence - to conserve resources for seeds and buds, a survival strategy some plant scientists refer to as "die and let live."

The study offers insights into the drought survival mechanisms of plants and presents a possible means of protecting crops from severe drought stress.

"This study shows that controlled senescence is good for plants under drought conditions," said Yang Zhao, first author of the study and research assistant in the Jian-Kang Zhu lab in the Department of Horticulture. "This combination of death and life is similar to a triage strategy. If old leaves die, then the buds and small leaves might gain life."

Because plants can't flee drought, they deploy an array of survival strategies while awaiting better growing conditions. Their drought responses are controlled by a hormone known as abscisic acid (ABA), which regulates growth and development and directs plants' reaction to stress.

Plants' short-term drought responses include closing their stomata - holes that "exhale" water - and creating extra wax to seal moisture within leaves. Long-term drought conditions cause plants to go into dormancy and redirect water and nutritional resources away from leaves to sink tissues such as seeds and buds, reservoirs for new growth. A shriveled, leafless plant might appear dead but is often executing a line of defense.

Zhao and his fellow researchers found that altering plants to overexpress PYL9 made them highly sensitive to ABA. A stress-responsive promoter protein controlled the level of PYL9 expression in the plants.

The gene alterations enabled Arabidopsis and rice to better withstand severe drought stress and caused older leaves to yellow sooner compared with the plants' wild type counterparts.

PYL9 transgenic rice had a 50 percent survival rate after a two-week drought compared with 10 percent survival in wild type rice.

Zhao cautioned, however, that the spike in survival rate does not mean that the yield of the transgenic plants under drought conditions would equal that of conventional rice varieties under good growing conditions. The study did not test for yield.

"We still can't really solve the problem of drought," he said. "But we can make it better. In extreme drought conditions, even a bad yield would be better than nothing in terms of preserving human life."

The transgenes did not affect plant growth and development under normal conditions, which suggests that they could be used to improve crop drought tolerance.  

"It is challenging to figure out the specific function of individual PYL proteins," said Jian-Kang Zhu, distinguished professor of plant biology and the study's principal investigator. "This study not only illuminates the function of PYL9 in stress-induced leaf senescence but also demonstrates a great potential for using PYL9 to improve plant drought resistance."

Unexpectedly, when transgenic plants were treated with ABA under normal conditions, the old leaves started to wilt, even though the plants received enough water. This suggests that the plants had blocked their old leaves' access to water, preferentially driving water to developing tissues instead.

The research team concluded that during severe drought conditions, hypersensitivity to ABA leads to increased senescence and death of old leaves but protects young tissues by sending them into dormancy. The study also suggests that the ABA core signaling pathway plays a crucial role in plant survival during extreme drought and that senescence is a beneficial drought defense strategy, previously points of contention among plant scientists.

"This common connection finally uncovers the underlying molecular mechanism of drought- and ABA-induced leaf senescence and its association with the ability to survive extreme drought," Zhao said.

The study was published in the early edition of Proceedings of the National Academy of Sciences on Monday (Feb. 1) and is available at http://dx.doi.org/10.1073/pnas.1522840113

Funding for the research was provided by the U.S. National Institutes of Health, the Chinese Academy of Sciences, the National Natural Science Foundation of China, the Knowledge Innovation Key Program of the CAS and the Sino-Africa Joint Research Project. 

Writer:  Natalie van Hoose, 765-496-2050, nvanhoos@purdue.edu 

Sources: Yang Zhao, 765-496-7603 or 765-496-7608, zhao296@purdue.edu

Jian-Kang Zhu, 765-496-7608, zhu132@purdue.edu


ABSTRACT

ABA receptor PYL9 promotes drought resistance and leaf senescence

Yang Zhao 1, 2; Zhulong Chan 3, 1; Jinghui Gao 2, 5; Lu Xing 2, 4; Minjie Cao 1; Chunmei Yu 2, 6; Yuanlei Hu 2, 7; Jun You 3; Haitao Shi 3; Yingfang Zhu 2; Yuehua Gong 2, 8; Zixin Mu 2, 9; Haiqing Wang 2, 10; Xin Deng 2, 11; Pengcheng Wang 2; Ray A. Bressan 2; Jian-Kang Zhu 1, 2

1 Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China

2 Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA

3 Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China

4 School of Life Sciences, University of Science and Technology of China, Hefei 230026, China

5 College of Animal Science and Technology, Northwest A&F University, Yangling, Shaan'xi 712100, China

6 College of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China

7 College of Life Sciences, Peking University, Beijing 100871, China

8 College of Life Science and Food Engineering, Yibin University, Yibin, Sichuan 644000, China

 9 College of Life Science, Northwest A&F University, Yangling, Shaan'xi 712100, China

10 Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining 810001, China

11Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Science, Beijing 100093, China

E-mail: zhao296@purdue.edu 

Drought stress is an important environmental factor limiting plant productivity. In this study, we screened drought-resistant transgenic plants from 65 promoter-PYL ABA receptor gene combinations and discovered that pRD29A::PYL9 transgenic lines showed dramatically increased drought resistance and drought-induced leaf senescence in both Arabidopsis and rice. Previous studies suggested that ABA promotes senescence by causing ethylene production. However, we found that ABA promotes leaf senescence in an ethylene-independent manner by activating SnRK2s, which subsequently phosphorylate ABFs and RAV1 transcription factors. The phosphorylated ABFs and RAV1 up-regulate the expression of senescence-associated genes, partly by up-regulating the expression of Oresara1. The pyl9 and abi1-1 single mutants, pyl8-1pyl9 double mutant, and snrk2.2/3/6 triple mutant showed reduced ABA-induced leaf senescence relative to the wild-type, whereas pRD29A::PYL9 transgenic plants showed enhanced ABA-induced leaf senescence. We found that leaf senescence may benefit drought resistance by helping to generate an osmotic potential gradient, which is increased in pRD29A::PYL9 transgenic plants and which causes water to preferentially flow to developing tissues. Our results uncover the molecular mechanism of ABA-induced leaf senescence and suggest an important role of PYL9 and leaf senescence in promoting resistance to extreme drought stress. 


Agricultural Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Ag News

Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, (765) 494-4600

© 2015-22 Purdue University | An equal access/equal opportunity university | Copyright Complaints | Maintained by Office of Strategic Communications

Trouble with this page? Disability-related accessibility issue? Please contact News Service at purduenews@purdue.edu.