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’ INTRODUCTION

Molecular recognition between receptors and ligands through
noncovalent association plays a fundamental role in virtually all
processes in biological systems. Although many computational
concepts exist to simulate receptor-ligand recognition, an
efficient and accurate quantification of such interactions is still
a challenging task. Force-field based methods such as molecular
dynamics (MD) or Monte Carlo (MC) simulations locally
sample energetically accessible substates of the protein-ligand
complex’s free-energy landscape. In combination with MD or
MC simulations, algorithms such as free energy perturbation1

or thermodynamic integration2 can reliably calculate relative
free-energies of binding of compounds to the same drug target.
Unfortunately, the associated procedures are computationally
demanding and are typically limited to the comparison of
structurally similar compounds. In an effort to reduce the com-
putational cost and allow for the comparison of diverse ligands,
end point methods such as linear interaction energy (LIE) or the
molecular mechanics/Poisson-Boltzmann surface area (MM/
PBSA) method were developed.3,4 Despite their success in
quantifying protein-ligand interactions, MD simulations must
be performed for each individual compound making end point
methods unfeasible for virtual high-throughput screening. In
addition to being computationally expensive, the application
of these techniques requires a priori knowledge of the ligand
binding mode.

To predict the bindingmode of compounds, docking methods
are widely utilized. Docking methods are less computationally
demanding than simulation-based free energy methods and are
used to virtually screen the vast chemical space of ligands that
could bind to a common target. With an appropriately parame-
trized scoring function, it is possible to identify probable binding
modes of any existing or hypothetical molecule. Unfortunately,
accurately estimating binding affinity from the quantification of
the resulting protein-ligand interactions proves to be a difficult
task; the wealth of devised scoring functions can, at best, yield
semiquantitative values.5 The inability of docking methods to
accurately predict free energies of binding can be largely attrib-
uted to three factors: the simplified representation of the physics
of protein-ligand association in the scoring function, the
insufficient incorporation of protein flexibility coupled to ligand
binding, and the missing dynamic structural information of the
protein-ligand complex.

The necessity to account for protein flexibility6 in docking
schemes is widely accepted,7-17 and recent advances in
docking algorithms begin to partially incorporate protein
flexibility. Methods such as soft-receptor modeling,18 the
development of protein ensemble grids,19 the use of rotamer
libraries,20 the incorporation of MD and MC methods21,22 in
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docking pose refinement, and the combination of docking
with protein structure prediction are used to model protein
flexibility.11,23

McCammon and co-workers pioneered the Relaxed Complex
Scheme (RCS) that aims to combine the efficiency of docking
with the sampling capabilities of MD simulations to account for
protein flexibility.24-26 In this method, multiple low-energy
conformations of the protein’s binding site are sampled using
MD simulations, a representative ensemble of protein structures
is generated using clustering, and the ensemble of protein
structures are subsequently used as alternative docking tem-
plates. The resulting ensemble of docking poses is clustered
based on the pairwise rmsd values between the different poses.
Averaging the score values from all docking solutions of a
cluster yields an average predicted free energy for each binding
mode. Incorporating slightly different protein and ligand
configurations into the calculation of the binding affinity of a
binding mode (here represented by members of a cluster) aims
to model the thermodynamic equilibrium state of the protein-
ligand complex more accurately and results in more accurate
predictions of binding free energies.27

The underlying concept of RCS is the population-shift
mechanism of ligand binding (Figure 1a): The protein exists
in an ensemble of different structures with the observed

ligand-free protein structure (apo form) being energetically
the most favorable state if no ligand is bound. In the presence
of the ligand, the ligand-bound protein conformation (holo
form) is selected from the ensemble of pre-existing con-
formations and is energetically stabilized by the ligand. The
alternative theory describing the observed conformational
changes of the protein upon ligand binding is the mechanism
titled induced-fit (Figure 1b): The ligand binds to a low energy
conformation of the unbound protein and ligand binding induces
a conformational change resulting in the holo form of the
protein that would be observed in the X-ray structure of the
protein-ligand complex. While many researchers favor the popu-
lation-shift mechanism, recent studies suggest that the mechan-
ism of protein flexibility coupled to ligand binding is complex
and involves both the population-shift and induced-fit
mechanisms.28-31

Even if the population-shift mechanism is the dominant
mechanism, in many cases the holo conformations of the
protein are rarely visited throughout the dynamics of the
ligand-free protein, and sampling these rare conformations is
a significant challenge for MD simulations. If the X-ray
structure of a holo protein structure is available, protein
conformations could also be sampled using MD simulations
on the protein with cocrystallized ligand. But, MD simulations
of the ligand-bound form of the protein can bias the trajectory
toward the specific ligand used in the MD simulation,27 and
other ligands may not be able to bind to this biased ensemble of
conformations (Figure 1c). Similar effects were recognized32 in
cross-docking studies to static apo and holo forms of various
protein-ligand systems: In several cases the holo structure was
strongly adapted to compounds similar in structure to the
ligand bound in the X-ray structure. In these cases, structurally
diverse compounds were successfully docked to the apo
structure and were not identified as possible leads when
docking to the holo structure. The observation of a biased
selection of possible lead compounds in virtual screening as a
result of using specific holo structures has been corroborated
by other cross-docking analyses.33,34

Based on the previous discussion, new concepts that sample
protein conformations that are relevant for binding structurally
diverse ligands are highly desirable. The conformations should be
unbiased toward a particular class of ligands in order to gain
higher enrichment levels and better quantification of protein-
ligand interactions for a diverse set of ligands. In this paper we
introduce the novel concept of a hypothetical ‘ligand model’, a
virtual ligand represented by a collection of functional groups,
that binds to the protein and dynamically changes its shape and
properties during MD simulations. The “ligand model” essen-
tially represents a large ensemble of different chemical species
binding to the same target protein. As a consequence, this
approach allows sampling of protein conformations relevant to
binding diverse ligands and also probes protein flexibility coupled
to ligand binding.

In this paper, we first introduce the protein-ligand systems
used in our study, followed by discussions of the docking
studies on the apo and holo forms of each protein system using
the static X-ray structure and the dynamic ensemble generated
by MD simulations. We then present the results of identical
docking studies on the ensemble of protein conformations
generated with the new ligand-model approach. Using the
ligand model we demonstrate superior docking results com-
pared to apo-ensemble docking.

Figure 1. (a) In the population-shift model of protein flexibility coupled
to ligand binding, different protein conformations are sampled by the
ligand-free form of the protein (protein: blue shapes). A ligand (orange
circle) binds to the ligand-bound form and stabilizes the particular
protein conformation. (b) In the induced-fit mechanism the ligand binds
to the apo form of the protein, and this interaction triggers a conforma-
tional change of the protein to accommodate the ligand. (c) Protein
conformations sampled for different ligand-bound forms of the protein
might be biased for their bound ligand (different ligands: rectangle and
triangle). Other ligands (here: circle) might not be able to bind to the
protein conformations biased by the other ligands.
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’MATERIALS AND METHODS

Protein Systems. Two protein systems, thrombin and acet-
ylcholinesterase, were chosen as test systems for binding pose
prediction as several X-ray structures with structurally diverse
ligands are available in the PDB databank for both systems.
Twenty-five structures of thrombin (PDB-codes: 1a4w, 1d3d,
1d3p, 1d3q, 1d3t, 1d4p, 1dwd, 1ghw, 1kts, 1oyt, 1tom, 1vzq,
1ype, 1ypj, 1ypg, 2c8w, 2c8y, 2c8z, 2c90, 2c93, 2c8x, 2cf8, 2cf9,
2cn0, 3biu) and six structures of acetylcholinesterase (1eve, 1gpk,
1hbj, 1qti, 1vot, 3i6m) were selected. For binding affinity predic-
tions, 14 compounds with consistently measured binding affinity
toward thrombin were chosen (ligands from 1ypg, 1ype, 1ypj,
1oyt, 2cf8, 2cn0, 1vzq; compounds rac-8, rac-13a and rac-16 from
ref 35, rac-5, rac-8, and rac-9 from 36 , (þ)-7 from ref 36).
For binding specificity prediction, high affinity ligands for each
of three different dihydrofolate reductase (DHFR) species
(human = hDHFR, Pneumocystis carinii = pcDHFR, Candida
albicans =caDHFR)were selected (see Supporting Information S1)
from Bowman et al.38 1hfr, 1daj, and 1ai9 were chosen as target
protein structures for docking to hDHFR, pcDHFR, and
caDHFR, respectively.
DockingUsingAutoDockVina.All docking simulations were

performed using AutoDock Vina.39 Protein and ligand prepara-
tion was performed using our in-house PyMOL plugin40 that
automatically calls the programs prepare_receptor4.py and pre-
pare_ligand4.py that are part of AutoDockTools.41 A cubic box
with dimensions of 25 Å x 25 Å x 25 Å centered on the centroid of
each cocrystallized ligand defined the search volume for Auto-
Dock Vina. Standard docking settings were used, and the 10
energetically most favorable binding poses are outputted.
Relaxed Complex Scheme (RCS)26. MD simulations were

employed to generate an ensemble of low-energy protein con-
formations. MD simulations were carried out using Amber42 and
Gromacs43,44 on the apo form and all 31 holo forms of thrombin
and acetylcholinesterase. Two different simulation protocols
were investigated for the apo form: One “short apo” simulation
protocol (using Amber) consisted of 500 steps of energy mini-
mization, 25 ps of equilibration, and 50 ps of production used to
generate the ensemble of protein structures with a water cap of
25 Å around the ligand. (This simulation protocol also was used
for all holoMD simulations.) These simulations are time efficient
but raise the question whether they extensively sample the con-
formational space of the protein accessible to different ligand-
bound forms. To address this issue, we also performed 30 nsMD
“long apo” sampling runs (using Gromacs) using a water box
with PME boundary conditions for the apo forms of thrombin
and acetylcholinesterase to investigate the influence of simula-
tion length and boundary conditions on the results of docking to
the apo trajectory of a protein. The resulting trajectories from
both settings were then separately clustered using quality thresh-
old (QT) clustering. The rmsd criterion was adjusted automa-
tically to generate 200-250 distinct protein conformations.
AutoDock Vina was used to perform docking to the ensemble
of protein conformations with identical settings as used in the
static docking experiments. The top-10 ranked binding poses
from each individual docking simulation were outputted and
considered for subsequent clustering. The binding poses were
clustered using QT clustering (1 Å cluster radius). Following
the procedure from S. Vajda and co-workers,45 clusters with
less than 15 members were discarded, and the predicted free
energy of binding for a binding-mode cluster i was calculated

based on the energy histogram over all binding modes j of a
cluster i using

ÆΔGiæ ¼ ∑
j ∈ Cluster i

pi, jΔGjwith

pi, j ¼
expð-ΔGj=kBTÞ
∑

j ∈ Cluster i
expð-ΔGj=kBTÞ

ð1Þ

pi,j is the probability of identifying a pose j in cluster i, and ΔGj

is the score of binding pose j.
Ligand-Model Concept (“Limoc”). As discussed above, apo

trajectories do not always represent an ensemble of protein
structures visited by the holo form of the same protein. In order
to guide the apo simulations into conformations visited by the
ligand-bound form of the protein, we developed the ligand-
model approach: Based on the initial apo protein structure, resi-
dues spanning the binding site of the protein are selected based
on manually docked ligands chosen by the user (Figure 2a). For
the protein systems studied in this manuscript a combination of

Figure 2. Scheme of ligand-model approach: Given a starting protein
structure the binding site is identified (a) and the solvent-accessible
surface for this binding site is computed (b). Molecular probes
complementary to the physicochemical properties of the residues of
the binding site are distributed onto the solvent accessible surface (c)
(gray: hydrophobic probe; blue-white: hydrogen-bond donor; red-
orange: hydrogen-bond acceptor). Throughout the MD simulation
the probes are harmonically restrained. (d) To sample the interactions
different possible ligands binding to the same binding site would
experience, donor and acceptor groups are copied and placed at
positions nearby the optimally complementary position. They interact
with different copies of the same complementary residue of the binding
site using the Locally-Enhanced Sampling method (LES).48 (e) To
sample the interactions of different sized ligands in various moieties of
the binding site, the equilibrium position of a probe is altered, following
the first principal component of a previous short MD simulation without
ligand model.
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ligands was chosen that best cover the volume of all cocrystallized
ligands used in the subsequent docking studies. The binding
modes of the ligands were obtained by aligning the associated
holo protein structures to the apo form using PyMOL. Existing steric
clashes with the apo protein is not an issue as the ligands are only
used to define the volume of the binding site. The use of artificial
ligands defining the binding site are possible, too. A protein
residue is selected to constitute the binding site if any atom of the
residue is within a user-defined radius around any atom of the
chosen ligands (we chose a radius of 5 Å). Next, the solvent-
accessible surface (SAS) of the binding pocket is computed
(Figure 2b) using the NSC module that is part of the program
package ASC/GM.46,47 The SAS is represented by individual
surface points. On this SAS, atoms of the hypothetical ligand
model are distributed, dependent on the complementary proper-
ties of the amino acids of the binding site (Figure 2c): A hydro-
phobic atom with van der Waals parameters of an sp3 carbon is
placed in hydrophobic moieties of the binding pocket, a hydro-
gen-bond donor group (represented by a dipole with van der
Waals radii andmasses of an oxygen and hydrogen atom and with
complementary charges of-0.4 and 0.4, respectively) next to an
acceptor in the binding site, and a hydrogen-bond acceptor
(represented by an atom with van der Waals radius and mass
of an oxygen atom, and a lone-pair, with complementary charges
of 0.4 and -0.4, respectively) next to a donor. The discrete
points of the SAS that are chosen for donor and acceptor group
are those that are optimal in hydrogen-bond distance and
directionality: For a protein’s donor group, the distance between
the donor hydrogen H and every surface point S (dH-S) and the
angle between donor heavy atom D, donor hydrogen H, and
surface point S (—(D,H,S)) is computed. The optimal position S
to place a hydrogen-bond accepting group of the ligand model is
determined by the minimum of the following empirical function

f ðSÞ ¼ dH - S 3 ð3þ cos½— ðD,H, SÞ�Þ ð2aÞ
For a protein’s acceptor group, the distance between acceptor

heavy atom A and every surface point S (dA-S) and the angle
between acceptor heavy atom A, lone pair L, and surface point S
(—(A,L,S)) is computed. The optimal position S to place a
hydrogen-bond donating group of the ligand model is deter-
mined by the minimum of the following empirical function

f ðSÞ ¼ dA - S 3 ð3þ cos½—ðA, L, SÞ�Þ ð2bÞ
As part of this assignment process, only hydrogen-bonding

groups of the protein are considered as possible hydrogen-bond
partner for ligand-model groups if they are not engaged in
intra-protein hydrogen bond interactions. An intraprotein hydro-
gen bond is formed if the distance between donor hydrogen and
acceptor heavy atom is smaller than 2.5 Å, and the angle between
donor heavy atom, donor hydrogen, and acceptor atom is larger
than 135�.
Hydrophobic ligand-model probes are placed on the surface

points that are not occupied by donor or acceptor groups. The
hydrophobic probes are equally distributed onto the SAS with a
minimum distance of 0.8 Å to other ligand-model probes to
represent a smooth interaction of the protein with the ligand
model representing different ligands able to bind to the protein.
As the distance between atoms in a real ligand would be larger
than 0.8 Å, the van der Waals interaction between protein and
ligand-model atoms are down-scaled.

The underlying assumption to place the probes of the ligand
model on the SAS is that the interactions between protein and
ligand, in particular hydrogen bonds, are close to optimal at this
distance. MD simulations are run on the protein-ligand model
complex using the following Hamiltonian

HðR1, :::,RP; r1, :::, rLÞ ¼ ∑
P

i¼ 1

1
2
Mi _R

2
i þ ∑

L

i¼ 1

1
2
mi _r

2
i

þ VP - PðR1, :::,RPÞ þ VP - LMðR1, :::,RP; r1, :::, rLÞ

þ ∑
L

i¼ 1
Vrestrðri - r0i Þ ð3Þ

Ri are the coordinates of protein and water atoms, and ri the
coordinates of the ligand model. VP-P is the standard interaction
potential between protein atoms (including water molecules)
using the Amber03 force field, and VP-LM is the corresponding
interaction potential between protein and ligand model atoms.
There is no interaction between individual LM probes. In a real
ligand, the different functional groups are connected to each
other via the ligand scaffold and therefore restricted in their
movement. To model this restriction during the simulation of
protein and ligand model, the atoms of the ligand model are
harmonically restrained around their equilibrium position on the
SASwith a force constant that is four times larger in parallel to the
SAS than perpendicular to the SAS. This is necessary to prevent
overlaps between ligand model atoms but to allow fluctuations
perpendicular to the SAS, consistent with the dynamics of a real
ligand binding to the protein. Vrestr describes this potential in
eq 3. Protein and ligand model atoms are separately coupled to a
Berendsen thermostat at a given temperature T = 300 K with
temperature coupling time τP = 5 ps. Simulations are performed
with a water cap with a radius of 25 Å.
Running a MD simulation of the protein with the specified

ligandmodel, however, would just sample conformations close to
the original structures and thus would only reproduce an
ensemble of protein structures similar to the apoMD simulation.
To simulate the conformational adaptation of the protein to
different ligands, we allow the ligand model to change dynami-
cally throughout the simulation, in an attempt to represent a large
portion of the chemical ligand space accessible to the binding site.
Both properties and the shape of ligand model are allowed to
change:
1 Different positions and orientations of the hydrogen-bond
donors and acceptors of the ligand model are probed,
fundamentally representing different ligands, to investigate
the capability of the protein to accommodate different
configurations of the hydrogen-bond partners (Figure 2d).
In the most primitive approach, this would extend the
simulation length by a factor directly proportional to the
product of the number of positions and orientations of all
hydrogen-bond probes. This approach is computationally
intractable, as there are easily several tens of different
hydrogen-bond configurations for each individual probe
(Figure 3, right panel). The conformational change at this
stage is expected to be localized, so we introduced the
method of Locally-Enhanced Sampling (LES) into our in-
house MD code.48 The relevant portions of the simulation
system are copied, which in this case are the different
conformations of the ligand model’s hydrogen-bonding
groups and their protein counterpart. The individual copies
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of the same group, i.e. probe and directly interacting amino
acid, do not experience any interaction with other copies of
the same group, and all other parts of the simulation system
experience the average interactions of all copies of the same
group. This approach results in an efficient sampling of
possible hydrogen-bond configurations without a tremen-
dous computational overload.
In more detail, starting from the initial optimal position of

a ligand-model donor or acceptor group, the positions of
ligand-model groups are identified that are a maximum
distance of 2 Å apart from the optimal donor or acceptor
group. Furthermore, the software checks whether these
alternative ligand-model donor or acceptor positions share
the same closest complementary protein’s hydrogen-bonding
group. Alternative copies of ligand-model’s hydrogen bond-
ing groups are distributed onto these positions if both criteria
(maximum distances to ideal position and same closest
protein group) are fulfilled. For each alternative copy of a
ligand-model hydrogen-bonding group an interacting copy of
the protein hydrogen-bonding residue is automatically added
to the simulation topology. The coordinates of the copied
residues are initially identical but automatically adapt to the
different positions of the interacting ligand-model groups
throughout the equilibration period. This procedure also
includes a copy for the hydrogen-bonding amino acid with
a hydrophobic probe as ligand partner in order to study the
localized impact on the protein configuration when a bound
ligand is lacking a complementary hydrogen-bond partner at
this moiety. Figure 3 displays one of the ligandmodels bound
to thrombin with and without copied probes.

2 To study the effect of topologically different ligands binding
to the protein, i.e. portions of the ligand smaller or larger in
size, we run locally steered MD simulations of the ligand
model to slightly enlarge or decrease the size of the SAS

accommodating the groups of the ligand model (Figure 2e).
The amplitude of steering each ligand-model probe is
determined by an initial principal component analysis of
the covariance matrix derived from the short 50 ps apo
simulation. In more detail, the atomic coordinates of resi-
dues lining the active site in the initial protein structure are
translated by the first principal component in both direc-
tions, and the modified SAS is calculated for the protein
structures resulting from both translations. The size of
protein’s conformational change is limited to approximately
1-2 Å rmsd. A new ligand model is generated as previously
described utilizing the modified atomic protein coordinates.
The coordinates of the probes of the new ligand model are
used in subsequent steeredMD simulations. In this process,
the closest new ligand model group for each original ligand-
model group is computed. This point determines the end
point of the steered MD simulation for each ligand-model
atom. The steering procedure is performed in both direc-
tions of the first principal component changing the equilib-
rium position of each ligand-model probe linearly through-
out the steered MD simulation. After steered MD and equili-
bration, standard conformational sampling with the previously
described ligand model is performed. The total simulation
length was 20 ps using a water cap of 25 Å radius. Inclusion
of copied atoms in the LES approach increases the CPU time
perMDsimulation step to approximately a factor of 2 compared
to standard MD. The simulation time of 20 ps, thus, is com-
parable in CPU time to the short apo simulations and signifi-
cantly more efficient than the 30 ns long apo MD simulations.

The underlying procedure to prepare and run Limoc simula-
tions is fully automatic, and default parameters are heuristically
defined. In principle, the user is able to change most parameters
using a parameter file, but we chose default settings for all protein
systems studied in this manuscript. The only user input required

Figure 3. Example of ligand model binding to thrombin. Left: Initial frame of ligand model-protein complex without copying the molecular probes and
their interacting protein (blue: hydrogen-bond donor probe (dark) and protein (light) atoms; red: acceptor probe (dark) and protein (light) atoms;
green: protein groups that can be both donor and acceptor; brown: hydrophobic probe atoms). Right: Snapshot of MD simulation of ligand model-
protein complex in which donor and acceptor probes and interacting residues are copied. Only donor and acceptor probes and copied residues are
displayed.

http://pubs.acs.org/action/showImage?doi=10.1021/ci100457t&iName=master.img-003.jpg&w=431&h=232
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to run a “ligand-model” simulation is the initial choice of ligands
to define the size of binding pocket.
After MD simulation with the ligand-model, the trajectory was

clustered in two steps: First, for eachMD snapshot distinct clusters
were identified for the copied amino acids. Second, all resultingMD
frames were subsequently clustered producing an ensemble of
200-250 protein conformations for subsequent docking.

’RESULTS AND DISCUSSION

Chemical Space Covered by LigandModel. Before utilizing
the ligand-model approach for docking, we addressed the ques-
tion whether the probes of the ligandmodel sufficiently cover the
chemical space of structurally diverse compounds binding to a
common target protein. As examples, we selected the 13 most
diverse ligands from the thrombin data set and analyzed the
occupancy density of ligand atoms throughout the correspond-
ing 13 holoMD simulations. We used ptraj from the Amber suite
to create a grid in X-Plor density format that presents the
occupancy of donor, acceptor, and any ligand atom in each grid

cell throughout the MD simulations. The same analysis was
repeated for the MD simulations on the ligand model-protein
complex. The results are displayed in Figure 4 and demonstrate
that the molecular probes of the ligand model (mesh) are
covering the chemical space of the 13 structurally diverse ligands
(density in surface representation). It should be noted that the
ligand-model probes sample multiple additional interactions that
are not present in the 13 cocrystallized ligands but could be
potential interaction sites for other ligands.
Docking to apo and holo X-ray Structures.To demonstrate

the importance of including protein flexibility in docking and to
validate the utility of AutoDock Vina for thrombin and
acetylcholinesterase we performed static docking to the apo
structures of both systems and to each individual holo struc-
ture. From 31 ligands bound to thrombin or acetylcholinester-
ase only 8, 9, 12, and 15 compounds could be successfully
docked (rmsd <2.5 Å to the experimentally observed native
binding pose) to the apo form of the protein among the top-1,
top-2, top-5, and top-10 ranked poses, respectively (Figure 5,
blue bars). When docking compounds to their native holo
conformation of the protein, more than 70% of all compounds
had a binding pose with an rmsd smaller than 2.5 Å to the native
pose for the top-ranked pose. When considering the top-10
ranked poses all except one ligand could be docked with rmsd
<2.5 Å to the native ligand conformation (Figure 5, red bars).
In summary, AutoDock Vina is able to reproduce the experi-

mentally observed ligand binding pose if the native holo con-
formation of the protein for each ligand is known but fails to do
so in most cases when the apo form of the protein is used.
Cross-Docking to holo X-ray Structures. In real-life applica-

tions usually few or no holo X-ray structures are known, and
docking is performed into the apo form or an individual ligand-
bound form of the protein. Thus, cross-docking experiments
were performed for eight diverse ligands binding to thrombin.
Each ligand is docked into the rigid protein structures of all seven
other ligand-bound forms of thrombin used in this study. From
seven ligands docked to each protein structure, between zero to
five compounds can be successfully docked within an rmsd of
2.5 Å (Figure 6, red bars). Thus, no holo structure is preorga-
nized to allow successful docking of all ligands to its binding site

Figure 4. Density map over MD trajectories of 13 holo structures of thrombin (surface representations) and the ligand-model simulation (mesh
representation). Overlap of occupied grid points by any atom (left, brown colors), acceptor groups (middle, red), and donor groups (right, blue). The
corresponding physicochemical properties of the protein are projected onto the protein’s surface for the right two panels (light blue: hydrogen-bond
donor atoms; light red: acceptor atoms; green: protein groups that can be both donor and acceptor).

Figure 5. Percentage of successfully docked ligands into the static apo
(blue bars) and holo (red) conformations of thrombin and acetylcho-
linesterase. A ligand is successfully docked if the rmsd between predicted
and experimentally observed binding pose is less than 2.5 Å.

http://pubs.acs.org/action/showImage?doi=10.1021/ci100457t&iName=master.img-004.jpg&w=431&h=171
http://pubs.acs.org/action/showImage?doi=10.1021/ci100457t&iName=master.img-005.jpg&w=227&h=154
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without additional protein flexibility. One X-ray structure (PDB-
code: 1kts) is adapted to its own ligand such that not a single
ligand other than its cocrystallized ligand can be successfully
docked to its binding site, despite the fact that the overall rmsd
deviation of residues in the binding site (0.79 Å) is inside the
range of observed deviations of all holo structures from the apo
form (0.44-0.87 Å).
Binding Mode Prediction Using RCS on apo and holo

Trajectories. MD trajectories were generated for the apo
forms of thrombin and acetylcholinesterase, along with each
of the 25 and 6 holo forms for the two protein systems,
respectively. For the apo forms two different settings were
investigated: A short 50 ps MD simulation using a water
cap to simulate small protein fluctuations and a long 30 ns
simulation for each protein system to allow for sampling more
diverse protein conformations. After QT clustering of each
trajectory into 200-250 representative protein conforma-
tions, docking into each ensemble member was performed
using AutoDock Vina. The individual poses were clustered,
and the scores of all members of a cluster were averaged using
canonical ensemble statistics yielding a final predicted score
for each cluster of binding poses, which are named RCS-poses
in the following discussion. Results for the short and long apo

as well as the holo ensemble docking results are displayed
in Figure 7.
Although no improvement in predicting the bioactive con-

formations of ligands can be observed for the top-1,-2, and-5
ranked RCS-poses when docking to the short apoMD simulation
ensemble, a 10% improvement can be identified for the top-10
ranked RCS-poses. A significant improvement over the static
apo docking results is observed if the ligands are docked to the
long apo MD simulation ensemble, suggesting that alternative
protein conformations relevant for docking diverse ligands can
only be sampled using longer apo MD simulations. However,
one-third of the ligands still cannot be docked to the long apo
MD simulation ensemble, suggesting that protein conforma-
tions important for binding a significant portion of the ligand
library have not been sampled throughout the long MD
simulations.
Cross-docking simulations were repeated for the same eight

thrombin ligands as described earlier in “Cross-docking to holo
X-ray structures” but using the holo MD ensembles. Figure 6
(blue bars) shows that on average no significant improvement
was observed using the RCS approach on the holo MD
ensembles compared to the static cross-docking experiments.
MD simulations of a ligand-bound form of the protein biases the

Figure 6. Cross-docking results: Percentage of successfully docked ligands (rmsd <2.5 Å ranked as top-1) to eight different X-ray holo structures of
thrombin. In red are shown the results for docking into the X-ray holo structures, in blue those for docking into the holo MD ensembles.

Figure 7. Percentage of ligands successfully docked into the ensemble of protein conformations generated by a short (blue bars) and long (purple) MD
simulation of the apo forms of thrombin and acetylcholinesterase as well as from short MD simulations of the holo forms (red) and from our ligand
model simulations (green). A ligand is successfully docked if the rmsd between predicted and experimentally observed binding pose is less than 2.5 Å.

http://pubs.acs.org/action/showImage?doi=10.1021/ci100457t&iName=master.img-006.jpg&w=300&h=171
http://pubs.acs.org/action/showImage?doi=10.1021/ci100457t&iName=master.img-007.jpg&w=300&h=157
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trajectory toward the ligand used in the MD simulation. Other
ligands are not able to bind to this biased ensemble of
conformations.
Binding Mode Prediction Using RCS on Ligand-Model

Trajectories. We hypothesize that induced fit of the protein is
required upon ligand binding and that these conformational
changes are not generally observed in the population of protein
structures sampled throughout the apo MD simulations. Our

ligand-model approach aims to sample protein conformations
observed upon binding of structurally different ligands. Starting
from the apo form of each protein, short 25 ps MD simulations
were run with the ligand model. After QT clustering of the MD
trajectory, docking simulations were performed into an ensemble
of 200-250 protein conformations. After clustering the binding
poses, the predicted binding affinity was determined by the
canonical ensemble average of the score of all members of a

Figure 8. Histograms showing the probability of identifying poses with a certain predicted free energy for docking into holo (purple), long apo (red),
short apo (orange), and ligand model (green) MD ensembles for three thrombin (BMZ, DA2K, C24) and one (G3X) acetylcholinesterase inhibitor.

http://pubs.acs.org/action/showImage?doi=10.1021/ci100457t&iName=master.img-008.jpg&w=486&h=547
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binding pose cluster. The results of docking into the ligand-
model MD ensemble are shown in Figure 7 (green bars). A
significant improvement in successfully predicting the bioactive
conformations of the 31 ligands binding to thrombin and
acetylcholinesterase can be observed compared to both the static
and the MD ensembles on the apo form of the proteins. Com-
pared to the short apo MD simulation, the rate of predicting the
bioactive conformation increases for the ligand-model simulation
by 35% to 48% for the top-1 to top-10 ranked poses. Even
compared to the ensemble generated by computationally con-
siderably more expensive long apo MD simulation, the success
rate increases significantly by between 16% and 29% for top-1,
top-2, top-5, and top-10 ranked poses. Success rates similar to
docking into the holo form of each individual protein-ligand
complex can be achieved when considering the top-2, top-5, or
top-10 ranked poses.
Thus, our new ligand-model approach seems to be able to

generate protein conformations that allow for successful docking
of structurally diverse ligands to the same protein. These results
also suggest that the ligand model stabilizes protein conforma-
tions through direct interactions with the protein throughout the
MD simulation, which are absent in the apo simulations and that
may reflect additional induced fit of the protein necessary to
accommodate a ligand.
The significance of the induced fit associated with ligand

binding is underlined in Figure 8 for the three thrombin ligands
BMZ (PDB-code: 1ghw), DA2K (1a4w), C24 (1kts), and one
acetylcholinesterase ligand G3X (3i6m). Histograms displaying
the probability of identifying poses with a certain predicted free
energy show a shift in energy toward more negative values for the
holo-docking simulations in comparison to the apo-docking
simulations. Upon ligand binding, additional adaptation of the
protein yields an optimally adapted protein-ligand complex
with more negative predicted binding energies than observed for
the poses generated by docking into the apoMD simulation. The
corresponding histograms (Figure 8) for docking into the ligand-
model MD ensemble show a shift from the apo histograms
toward more negative predicted free energies that are generally
in better agreement with the holo histograms. This shift of the
ligand-model histogram is consistent with the improved results
of docking into the ligand-model MD ensemble compared
to the apo MD ensemble and further suggests that using our
ligand-model approach an ensemble of protein conformations
can be generated that include a significant portion of the
protein adaptation to the bound ligand as observed in the holo
ensemble.
For ligand BMZ (Figure 8a), for example, the histogram of the

ligand model overlaps rather well with the histogram of the holo
form. The same is also true when considering only the population
of poses with an rmsd <2.5 Å (Figure 8b). The figure also shows
that the total number of good binding poses is relatively similar
between holo and ligand model docking simulations, slightly
larger than that for the long apo, and significantly larger than that
of the short apo docking simulation. Consequently, a good RCS-
binding pose can be identified at the top-1 position for ligand
model and holo ensemble, at top-2 position for long apo but only
at top-7 position for the short apo ensemble.
For ligand DA2K (Figure 8c) the difference between the

ligand model and long apo histogram is even more pronounced,
and no good binding poses are identified for the short apo
ensemble. The ligand model ensemble, however, fails to pro-
duce the population of binding poses with scores between

-10 kcal/mol and -9 kcal/mol for the holo ensemble. Conse-
quently, the best ranked RCS-pose for docking into the holo
ensemble is ranked at first position, whereas it is ranked second
for the ligand model simulation. No RCS-pose among the top-10
ranked RCS-poses can be identified for either apo ensemble
docking simulations.
The shift in energy between holo docking ensemble and ligand

model simulation is largest for ligand C24 (Figure 8e). Although
binding poses with rmsd <2.5 Å are observed for docking into
apo and ligand model ensembles (Figure 8f), no RCS-pose is
identified among the top-10 ranked solutions. The reason is that
many solutions with rmsd >2.5 Å have more negative scores than
poses with rmsd <2.5 Å. Additional induced fit not simulated in
the apo, and ligand model simulation seems to be necessary for
stabilizing low rmsd poses which then would yield to more
favorable scores.
For the acetylcholinesterase inhibitor G3X (Figure 8g and h),

holo and ligand model histograms are almost identical, whereas
the histograms of the apo ensembles are shifted to more positive
energies. Consequently, the top-ranked RCS-pose of the ligand
model ensemble displays an rmsd <1.0 Å, but no RCS-pose
among the top-10 ranked poses could be identified for the long
apo ensemble with an rmsd <2.5 Å.
Structural Analysis of Trajectories. To further understand

how the structural variations between holo, apo, and ligand
model MD ensembles result in the observed differences in
docking success we address two particular questions. First, which
structural differences between the holo structure and other
protein structures sampled throughout the various MD simula-
tions lead to failures in generating native-like ligand poses?
Docking ligand DA2K to the short apo simulation of thrombin,
for example, results in more energetically favorable binding poses
than docking to the long apo simulation, but no ligand poses with
an rmsd <2.5 Å to the native form are generated for the short apo
simulation. Second, which structural differences between holo
ensemble and apo ensembles result in the observed shift to more
positive scores for docking into the apo MD ensembles as
observed in Figure 8?
To answer those questions, detailed analysis was performed

characterizing the structural changes of the protein relevant to
ligand binding by distances between residues of the binding site.
In detail, the backbone of each amino acid is represented by the
CR atom and one atom represents the side-chain of each residue
(except glycine): Cβ for Ala, Nε for Arg, Cγ for Asn, Cγ for Asp,
Sγ for Cys, Cδ for Gln, Cδ for Glu, Cγ for His, Cγ1 for Ile, Cγ for
Leu, Cε for Lys, Sδ forMet, Cγ for Phe, Cγ for Pro, Oγ for Ser, Cβ

for Thr, Cδ2 for Trp, Cζ for Tyr, and Cβ for Val. Distances dij are
computed between all those representing atoms of the residues
that directly interact with the ligand in its bioactive conforma-
tions. For thrombin residues His57, Tyr60A, Trp60D, Lys60F,
Leu99, Ile174, Asp189, Ala190, Cys191, Glu192, Ser195, Val213,
Trp215, Gly216, Gly219, and Gly226, for acytylcholinesterase
residues Asp72, Trp84, Gly119, Tyr121, Ser122, Tyr130,
Glu199, Ser200, Phe288, Phe290, Phe330, Phe331, Tyr334,
His440, and Gly441 are considered to directly interact with the
individual ligands. We assume that the holo MD simulation
samples distances between residues in the binding site optimal
for the particular protein-ligand complex. We first identify the
top-N% ranked poses from docking to the holo ensemble with
rmsd <2.5 Å. From these top-N% docking poses, we compute
the range of distances for each dij; the minimum dij,min and
maximum dij,max value for each distance is identified. Two



702 dx.doi.org/10.1021/ci100457t |J. Chem. Inf. Model. 2011, 51, 693–706

Journal of Chemical Information and Modeling ARTICLE

variables describing the deviations from the optimal range of
dij∈[dij,min;dij,max] in positive and negative direction are com-
puted

d<ij ¼
dij - dij, min ifdij < dij, min

0 ifdij > dij, min

(
ð4aÞ

and

d>ij ¼
dij - dij, max ifdij > dij, max

0 ifdij < dij, max

(
ð4bÞ

This separation into smaller and larger than optimal dij values
is due to the assumption that values that are too small might not
provide enough space for binding the ligand in this particular
moiety of the binding site, whereas excessively large distances
might not provide optimal interactions between ligand and
protein, resulting in a shift to more unfavorable score values.
To address the first question, which structural variations lead

to failure in identifying native-like binding poses, we correlated
the rmsd of the binding poses to the native ligand conformation
with dij

< and dij
>, characterizing the relative positions of amino

acids in the binding site and their deviations from the optimal
holo protein structure. We performed multilinear regression

analysis for all four ligands in Figure 8 using SAS software49

correlating dij
< and dij

> with the rmsd deviation from the native
ligand conformation

RMSD ¼ c0 þ ∑
ij
c<ij 3 d

<
ijþ∑

ij
c>ij 3 d

>
ij ð5aÞ

where c0, cij
<, and cij

> are the regression coefficients. For the
definition of dij,min and dij,max all top-ranked poses from docking
into the holo ensemble with rmsd <2.5 Å were considered
(N = 100). The optimal set of dij

< and dij
> are identified using

stepwise regression. To ensure low multicolinearity among the
predictors, Variance Inflation (VIF) is utilized to monitor the
degree of multicolinearity in the model. The VIFs for all des-
criptors in the model are aimed to be smaller than 5. To achieve
this goal, the significance level to stay (SLS) in the model is set to
between 0.0001 and 0.05.49

The results for all four ligands are presented as Supporting
Information S2. In the following discussion, we will focus on the
structural interpretation of the results for DA2K as an example.
For DA2K binding to thrombin, eleven descriptors are identi-
fied in the multilinear regression with an overall regression coeffi-
cient of r2 = 0.75. Five out of eleven descriptors are distances
that include the side chain-representing atom Cδ of Glu192

Figure 9. DA2K-bound X-ray structure of thrombin (top panel) with (a) distances that cause non-native binding poses when (magenta) smaller or
(black) smaller or larger than the corresponding distances in the holo MD ensemble. (b) Distances that cause more positive predicted binding affinities
when larger than the poses resulting in lowest predicted free energies. The histograms for the distances in (b) for holo, long apo, and ligand-model
ensemble are shown in (c: d(CR,His57 - CR,Glu192)) and (d: d(Cδ2,Trp60D - CR,Asp189)). dij,min and dij,max are displayed as dashed vertical lines in (c)
and (d).

http://pubs.acs.org/action/showImage?doi=10.1021/ci100457t&iName=master.img-009.jpg&w=438&h=344
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suggesting that the conformation of this particular residue is
crucial for DA2K binding. Furthermore, a single descriptor
d<(Cδ,Glu192-CR,Trp60D) explains about one-half of the total
variance in the rmsd data. In the context of the X-ray structure of
DA2K-bound thrombin (see Figure 9a), a side-chain orientation
of Glu192 located closer to the opposite site of the binding
pocket (here represented by Trp60D) does not allow enough
space for binding DA2K in its native conformation. This inward-
pointing conformation of Glu192 is predominant in the short
apo simulation (percentage of d(Cδ,Glu192-CR,Trp60D)<dmin-
(Cδ,Glu192-CR,Trp60D) is 100%). Thus, no native-like binding
poses could be identified when docking to the short-apo MD
simulation. Although the short apoMD simulation does not have
enough time to sample Glu192 side-chain conformations with
d(Cδ,Glu192-CR,Trp60D) values larger than dmin(Cδ,Glu192-
CR,Trp60D), that is not the case for the long apoMD simulation,
where Glu192 conformations are identified with d(Cδ,Glu192-
CR,Trp60D)>dmin(Cδ,Glu192-CR,Trp60D) in more than 70%
of all snapshots.
A similar probability of obtaining native-like poses is

achieved for long apo and ligand-model docking simulations
(see Figure 8d). The score, however, of the good binding poses
of the long apo docking simulation is significantly shifted to less
favorable values, resulting in a native-like RCS pose being
ranked outside of the top-10.
To address the question why the score for good binding poses

is shifted to positive values for the long apo simulation with
respect to holo and also ligand-model docking simulations, we
performed a multilinear regression analysis between score and
distance descriptors dij

< and dij
>, focusing only on good binding

poses

ΔGpred ¼ c0 þ ∑
ij
c<ij 3 d

<
ijþ∑

ij
c>ij 3 d

>
ij ð5bÞ

The range of optimal dij values (dij,min < dij < dij,max) was
defined by the range of dij values for the top-5% highest ranked
poses from the holo MD docking simulations. Details of the
multilinear regression for all four compounds from Figure 8 can
be found as Supporting Information S3. Only two descriptors,
d>(CR,His57 - CR,Glu192) and d>(Cδ2,Trp60D - CR,Asp189)),
are needed to explain 68% of the score variance of DA2K docked
into the various ensembles. Both distances include two residues
that snuggly accommodate the ligand from two almost opposite
sites and thus stabilize the native ligand conformation (Figure 9b).
Trp60D even fills a small cleft in the ligand similar to a wedge. On
the opposite side, Asp189 forms crucial salt bridges with the
guanidinium group of the ligand. If the distance between both
those residues is too large, an optimal interaction between
protein and ligand is unlikely. As shown in Figure 9d, the distance
between holo and ligand-model is quite similar. Due to the lack of
a stabilizing effect of ligand or ligand model in the long apo
simulation, predominantly larger distances are sampled between
Trp60D and Asp189. The same shift to longer distances from the
holo to the long apo docking ensemble is observed in Figure 9c
for the residue pair His57-Glu192. In the ligand-model ensemble,
however, the distances are on average also slightly shifted to
larger values, resulting in slightly worse docking performance
when compared to the holo-docking simulations.
Binding Affinity Prediction Using RCS on apo and Ligand-

Model Trajectories. In a final experiment we addressed the
question of whether the improved incorporation of holo-like
protein structures using the ligand-model approach can yield a

more accurate prediction of binding affinities using RCS. We
docked 14 ligands with known binding affinities from a single
laboratory into the ligand-model and long apo simulation
ensemble of thrombin. Docking into the apo MD simulation
resulted in an r2 = 0.51, and docking to the ligand-model MD
simulation resulted in an r2 = 0.69 using the RCS pose with
lowest rmsd to the X-ray structures (see Supporting Information
S4 for details). Observed correlations between experimental and
predicted binding affinities using docking and scoring methods
are often dominated or at least strongly influenced by the inhe-
rent relationship between affinity and size of the ligands.50,51 To
test the specificity of our correlation we computed the r2 value of
experimental affinity with the number of heavy atoms, appro-
ximately representing the size of each ligands. The resulting r2 of
0.31 suggests that there is some correlation between affinity and
size of the ligand but that the correlation between predicted and
experimental binding affinities using docking into the ligand-
modelMD ensemble is significantly stronger than the correlation
by size only and also stronger than the correlation obtained by
docking into the apo MD ensemble.
Binding Specificity Prediction Using RCS on DHFR. Includ-

ing protein flexibility into structure-based virtual screening gene-
rates a larger pool of potential target conformations which can
expand the chemical space of identified potential hits. As pointed
out by Carlson and co-workers,38 this increase in potentially
accessible chemical space might on the other hand allow the
binding of more promiscuous ligands that must be separated
from high affinity ligands using the scoring function. Considering
the known issues with scoring functions used in docking, this
increased pool of potential binders can finally result in reduced
performance of the virtual screening protocol. This raises the
question whether the previously demonstrated improvement in
predicting binding modes and binding affinities compared to
utilizing a static protein structure can compensate the expected
reduction in selectivity prediction performance. Based on the
suggestion of one of the referees, we approached the question by
predicting selectivity between three different DHFR species
(human = hDHFR, P. carinii = pcDHFR, C. albicans = caDHFR).
Twenty high affinity ligands were selected for hDHFR and
pcDHFR, and 19 ligands for caDHFR from Carlson and co-
workers.38 These 59 ligands were docked into each of the three
species, and enrichment of the species-specific high affinity ligands
against the other 39 or 40 compounds was computed (Figure 10).
Virtual screening studies were performed on a static pro-
tein structure and on the Limoc-sampled protein structures
utilizing RCS.
The area-under-the-curve (AUC) of the ROC plot ‘True

positives versus false positives” (Figure 10) was computed for
all three DHFR species. Using the static X-ray structure only
hDHFR displays significant enrichment (AUC = 0.90; ideal = 1.0;
random = 0.5), whereas no significant enrichment was observed
for pcDHFR (AUC = 0.47) and caDHFR (0.59). Performing the
same studies using the Limoc-RCS scheme similar enrichment
for hDHFR (0.86), slightly improved enrichment for pcDHFR
(0.57) and a drop in enrichment for caDHFR (0.27) was
obtained.
We attribute this latter drop in enrichment to the combination

of three factors: First, caDHFR-specific ligands are typically
smaller than the selected hDHFR-specific ligands. Second, the
scoring function is additive in character exaggerating the influ-
ence of ligand size onto binding affinity. Third, the scoring
function of AutoDock Vina does not display strong energetic
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differentiation between hDHFR- and caDHFR-specific ligands
binding to the static caDHFR structure; the score for 90% of the
compounds ranges from -8.3 to -7.1 kcal/mol. Considering
that there is no conformational change observed between apo
and several holo structures for caDHFR (based on a super-
position of 1ai9 with 1aoe, 1ia1, 1ia2, 1m7a, 1m78, 1m79 using
PyMOL), the apo X-ray structure of caDHFR is optimally
adapted to bind caDHFR-specific ligands. Thus, small conforma-
tional changes in the protein provide alternative structures that
can accommodate hDHFR-specific ligands but do not addition-
ally favor the binding of caDHFR-specific ligands. As a result, the
binding affinity of hDHFR-specific ligands relative to caDHFR-
specific ligands is increased in schemes that include protein

flexibility into docking. Together with the three previously men-
tioned factors, this explains why hDHFR-specific ligands are
ranked higher in the Limoc-RCS scheme compared to the static
docking scheme. This trend is unlikely to be specific to the
Limoc-RCS scheme but will probably be observed for other
approaches that include protein flexibility in conjunction with
additive scoring function such as AutoDock Vina.
Furthermore, utilizing receptor-based pharmacophore models

based on multiple X-ray structures for the same three DHFR
species, Carlson and co-workers also observed that caDHFR-
models performed poorer in identifying species-specific ligands
compared to hDHFR- and pcDHFR models.38

’CONCLUSIONS

We have presented the development and validation of a new
methodology, named the ‘ligand-model’ concept (“Limoc”), to
sample protein conformations that are relevant for binding
structurally diverse sets of ligands and that are unbiased toward
a particular class of ligands. In this concept, MD simulations are
performed with a virtual ligand, represented by a collection of
functional groups, which binds to the protein. The ligand model
dynamically changes its shape and properties during the simula-
tions, essentially representing a large ensemble of different chem-
ical species binding to the same target protein. We demonstrated
that this approach allows sampling of protein conformations
relevant to its interaction with different ligands. In combination
with RCS, we obtained significant improvement in docking
success compared to docking simulations into the ensembles of
protein structures generated in short and long apo MD simula-
tions: First, the percentage of reproducing native-like poses
(rmsd <2.5 Å) for 31 compounds binding to thrombin or
acetylcholinesterase among the top-1, -2, -5, and -10 ranked
RCS poses increased by between 16% and 29% compared with
the long apo simulation docking results. Second, distances
between amino acids in the binding site, that are critical for
ligand binding, are more similar to the holo structure in the
ligand-model MD ensemble than in the apo ensembles. That
yields to the observed shift tomore negative binding free energies
for the ligand-model docking results compared to those of the
apo simulations. Third, a stronger correlation between experi-
mental and predicted binding affinity was observed for the RCS
poses resulting from the ligand-model ensemble compared to the
apo ensemble. That suggests that our ligand-model approach, in
conjunction with RCS, is able to predict binding affinities and
rank structurally diverse compounds more accurately.

We emphasize that our approach does not require knowledge
of a ligand-bound X-ray structure. The cocrystallized ligands are
currently only used to define the space of the binding pocket. For
both systems discussed here, the sampling of protein conforma-
tions with the ligand-model concept started from an unbound
structure. We also point out, however, that with the current
implementation of the ligand-model approach it is only feasible
to sample protein conformations that are distinct by approximately
1-2 Å rmsd. Although it is possible to combine our approach
with other protein conformational search methods (e.g., elastic
network models,52-58 loop prediction,59-64 etc.) for sampling
large conformational changes, we do not expect the ligand-model
approach alone to be feasible for sampling large scale changes in
protein structure, such as alternative loop conformation or large
hinge-bending motions. Despite these shortcomings, however,

Figure 10. ROC curves for selectivity prediction accuracy of high-
affinity ligands binding to three different DHFR species (a: hDHFR, b:
pcDHFR, c: caDHFR). Plots of true positives (e.g., hDHFR-specific
ligands for hDHFR) versus false positives (e.g., caDHFR- and pcDHFR-
specific ligands for hDHFR) are displayed for docking to the X-ray
structure (blue) or Limoc-generated conformational ensemble (red) of
each DHFR species.

http://pubs.acs.org/action/showImage?doi=10.1021/ci100457t&iName=master.img-010.jpg&w=225&h=442
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the ‘ligand-model’ concept should prove to be a valuable tool for
exposing previously inaccessible protein conformations.
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selectivity predictions, results of multilinear regression analysis of
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