Rolling Without Slipping

Consider the wheel shown below that rolls along a rough, stationary horizontal surface with the center of the wheel O having a velocity and acceleration of v_{O} and a_{O}, respectively. As the wheel moves, it is assumed that sufficient friction acts between the wheel and the fixed horizontal surface that the contact point C does not slip. The consequences of the "no slip" condition at C are:

$$
\begin{aligned}
& \begin{array}{l}
v_{c x}=0, ~ C \text { cannot go int the ground } \Rightarrow V_{c y}=0 \\
a_{c x}=0
\end{array} \text { We can show that } \vec{V}_{c}=0 \Rightarrow a_{c x}=0, a_{c y}=\omega^{2} k \hat{j} \\
& \text { (If either of the above is not true, then point C "slips" as the wheel moves.) }
\end{aligned}
$$

CHALLENGE QUESTION: If C is a no-slip point, what are the y-components for the velocity and acceleration of C ?

$$
V_{0 y}=0, \quad a_{0 y}=0
$$

ANSWER: Since O moves on a straight, horizontal path, the y-components of the velocity and acceleration of O are zero. From this and the no-slip condition above for C , we can write:

$$
\begin{aligned}
& \begin{aligned}
V_{0 y}=0 \Rightarrow\left\{\begin{aligned}
\vec{v}_{C} & =\vec{v}_{O}+\vec{\omega} \times \vec{r}_{C / O} \\
v_{C y} \hat{j} & =v_{O} \hat{i}+(\omega \hat{k}) \times(-R \hat{j})=\left(v_{O}+R \omega\right)
\end{aligned}\right. \\
\text { and } \\
\text { O }_{0 y}=0 \Rightarrow\left\{\begin{aligned}
\vec{a}_{C} & =\vec{a}_{O}+\vec{\alpha} \times \vec{r}_{C / O}-\omega^{2} \vec{r}_{C / O} \\
a_{C y} \hat{j} & =a_{O} \hat{i}+(\alpha \hat{k}) \times(-R \hat{j})-\omega^{2}(-R \hat{j})
\end{aligned}\right.
\end{aligned} \\
& =\left(a_{O}+R \alpha\right) \hat{i}+R \omega^{2} \hat{j} \quad \Rightarrow \quad a_{C y}=R \omega^{2}
\end{aligned}
$$

From this we see that: $\vec{v}_{c}=\overrightarrow{0}$ and $\vec{a}_{C}=R \omega^{2} \hat{j} \neq \overrightarrow{0}$.

This says that the velocity for a no-slip point is zero; however, the acceleration of that point is NOT zero.

Consider another situation where here the wheel rolls without slipping on a second body B that is itself translating in the x-direction.

$$
\begin{aligned}
\vec{V}_{C}^{\prime} & =v_{B} \hat{i} \\
\vec{V}_{B}^{\prime} & =\vec{V}_{C}^{\prime}+(-\omega \hat{R}) \times(R \hat{j}) \\
& =\left(V_{B}+\omega R\right) \hat{i}
\end{aligned}
$$

No slip for this situation is described by the following:

$$
\begin{aligned}
& v_{c x}=v_{B} \\
& a_{c x}=a_{B}
\end{aligned}
$$

Following the same type of analysis shown above, we can show that the no-slip conditions produces: $v_{C y}=0$ and $a_{C y} \neq 0$.
For all Rolling without slipping problems, ' we always Start with
$V_{c x}=V_{B}, \quad V_{c y=0}, \quad a_{c x}=a_{B}$

$v_{c_{1} x}=V_{c_{2} x}$ $V_{c y}=V_{c_{2} y=0}$ $a_{C_{1 x}}=a_{c_{2} x}$
$a_{(13)} \neq a_{(2)}$

Given: Rack A moves to the right with a speed of v_{A} and an acceleration of a_{A}. Rack B moves to the left with a constant speed of v_{B}. Assume $v_{A}=0.8 \mathrm{~m} / \mathrm{s}, a_{A}=2 \mathrm{~m} / \mathrm{s}^{2}, v_{B}=0.6 \mathrm{~m} / \mathrm{s}, r=0.1$ m and $R=0.16 \mathrm{~m}$.

$$
a_{B}=0
$$

Find: Determine:
(a) The velocity of point P on the outer rim of the gear; and
(b) The acceleration of point P on the outer rim of the gear.

Weed to find w, a oo the gear

$$
\begin{aligned}
& \overrightarrow{v_{c}}=\vec{v}_{D}+\vec{\omega} \times \vec{r}_{c / p} \\
& V_{D}=V_{B} \\
& a_{D x}=a_{B x}=0 \\
& =-v_{B} \hat{i}+\omega \hat{k} \times(R+r) \hat{j} \\
& =-\left[V_{B}+\omega(R+r)\right] \hat{i}=V_{B} \hat{i} \Rightarrow \omega=-\frac{V_{A}+V_{B}}{R+r} \\
& \vec{a}_{c}=\vec{a}_{0}+\vec{\alpha} \times \vec{\gamma}_{y_{p}}+\vec{\omega} \times\left(\vec{\omega} \times \vec{r}_{y_{p}}\right) \\
& =\omega_{i}+a_{D_{y}} \hat{j}+\alpha \hat{k}(k+r) \hat{j}+\omega \hat{k} \times[\omega \hat{k} \times(R+r) \hat{j}] \\
& =a_{D y} \hat{j}-\alpha(R+r) \hat{i}-\omega^{2}(R+r) \hat{j} \\
& a_{c x}=-\alpha(R+r)=a_{A} \Rightarrow \alpha=\frac{-a_{A}}{R+r}
\end{aligned}
$$

find \vec{v}_{p}, \vec{a}_{p}

$$
\begin{aligned}
& \vec{v}_{p}=\vec{V}_{D}+\vec{\omega} \times \vec{\gamma}_{p / D}=-V_{B} \hat{i}+\omega \hat{k} \times(R \hat{i}+R \hat{j}) \\
& =-\left(V_{3}+\omega R\right) \hat{i}+\omega R \hat{j} \\
& \vec{a}_{p}=\vec{a}_{D}+\vec{z} \times \vec{r}_{p}+\vec{\omega} \times\left(\vec{w} \times \vec{o}_{p}\right)=a_{D y} \hat{j}+2 \hat{k} \times(R \hat{i}+R \hat{j})+\omega \hat{k} \times\left[\omega_{k} \times\left(R R^{i} R_{i} i^{\prime}\right)\right] \\
& \left.=\left(-\alpha \cdot R-\omega^{2} R\right) \hat{i}+\left(\alpha_{0} y\right) \cdot \alpha R-\omega^{2} R\right) \hat{j} \\
& \text { don't know } \leftharpoonup\left(a_{0}\right)_{y}=0
\end{aligned}
$$

$$
\begin{aligned}
\vec{a}_{0} & =\vec{a}_{D}+\vec{\alpha} \times \vec{r}_{O / D}+\vec{\omega} \times\left(\vec{\omega} \times \vec{r}_{o / D}\right) \\
& =a_{D y} \hat{j}+\alpha \hat{k} \times R \hat{j}+\omega \hat{k} \times(\omega \hat{k} \times R \hat{j}) \\
& =a_{D y} \hat{j}-\alpha R \hat{i}-\omega^{2} R \hat{j} \\
a_{0 y} & =0 \Rightarrow a_{D y}-\omega^{2} R=0 \Rightarrow a_{0 y}=\omega^{2} R
\end{aligned}
$$

Substitute to \vec{a}_{p}.

$$
\begin{aligned}
\overrightarrow{a_{p}} & =\left(-2 R-\omega^{2} R\right) \hat{i}+\left(\omega^{2} R+2 R-\omega^{2} R\right) \hat{j} \\
& =\left(-2 R-\omega^{2} R\right) \hat{i}+2 R \hat{j}
\end{aligned}
$$

Example 2.A. 6
Given: A cable is wrapped around the inner radius of a spool. End A of the cable is moving to the right with a speed of v_{A}. The spool is able to roll without slipping on a rough horizontal surface.

Find: Determine:
(a) The velocity of the center O of the spool; and
(b) The angular velocity of the spool.

Use the following parameters in your analysis: $v_{A}=2 \mathrm{~m} / \mathrm{s}, r=0.4 \mathrm{~m}$ and $R=0.8 \mathrm{~m}$. Also, be sure to express your answers as vectors.

$$
\begin{aligned}
& \vec{V}_{A}=\vec{V}_{L}+\vec{\omega}^{\prime} \times \vec{r}_{A / L} \\
&=\vec{o}+\omega \hat{R} \times(R-r) \hat{j} \\
&=-\omega(R-r) \hat{i}=v_{A} \hat{i} \\
& \Rightarrow \omega=-\frac{V_{A}}{R-r} \\
& \vec{V}_{0}=\vec{V}_{c}+\vec{\omega} \times \vec{V}_{C} \\
&=\overrightarrow{0}+\omega \hat{k} \times R \hat{j} \\
&=-\omega R \hat{i}=\frac{V_{A R}}{R-r} \hat{i}
\end{aligned}
$$

