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Chapter 1

Particle Kinematics
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A. Planar Kinematics: Cartesian, Path and Polar Coordinates

Background
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I.1 - Kinematics: Cartesian, Path and Polar Coordinates 

 
 

 
Background: 
Point P moves on a curvilinear path in a plane. We will consider the motion of P in the 
plane using three different descriptions (see 
figure to the right): 

• Cartesian description – here we know the 
path of P in terms of Cartesian 
components x and y. Typically this path is 
given by an equation such as y = y(x) that 
relates the x- and y-components. 

• Path description – here the position is 
known in terms of a given path and a 
distance s traveled along the path. 

• Polar description – here the position is 
known in terms of a radial distance r and 
an angle !. The path of P is often expressed in terms of an equation such as r = 
r(!) that relates r and !. 

 
 
Objectives: 
The goals of this lecture are to write the velocity and acceleration for the planar motion of 
a point in terms three alternate descriptions: Cartesian, path and polar. The results of 
these three kinematical descriptions will be compared and contrasted exposing the 
attributes of each. 
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Point P moves on a curvilinear path in a plane. We will con-
sider this planar motion of P using three di↵erent descriptions
(see figure to the right):

• Cartesian description – here the path of P is known
in terms of the Cartesian components x and y.
Typically this path is given by an equation such
as y = y(x) that relates the x and y compo-
nents.

• Path description – here the position is known in terms
of a distance s measured along the path of the parti-
cle.

• Polar description – here the position is known in terms
of a radial distance r (as measured from point O) and
the angle ✓ for the line OP. The path of P is often
expressed in terms of an equation such as r = r(✓) that
relates r and ✓.

Objectives

The goal of this lecture is to write the velocity and acceleration for the planar motion of a point
in terms of three alternate descriptions: Cartesian, path and polar. The results of these three
kinematic descriptions will be compared and contrasted exposing the attributes of each.



Lecture Material

As always, the velocity and acceleration of point P are given by the first and second time derivatives,
respectively, of the position vector ~r for P:

~v =
d~r

dt

~a =
d2~r

dt2

The kinematic equations for the Cartesian, path and polar descriptions are derived in the following
notes. The following figures showing the kinematic variables and unit vectors will be used in these
derivations.
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Lecture Material 
As always, the velocity and acceleration of point P are given by the first and second time 
derivatives, respectively, of the position vector r for P: 

 v = dr
dt

 

 a = d2 r

dt2
 

The kinematic equations for the Cartesian, path and polar descriptions are derived in the 
following notes. The following figures showing the kinematical variables and unit vectors 
will be used in these derivations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Cartesian kinematics 
Here we write the position vector for P in terms of its x and y components and 
corresponding unit vectors: 
 
  r = x i + y j  
 
Therefore, through differentiation with respect to time: 
 

 

   

v =
dr
dt

= !x i + !y j

a =
d2r

dt2
= !!x i + !!y j
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Cartesian Kinematics

Here we write the position vector for P in terms of its x and y components and corresponding unit
vectors:

~r = xî+ yĵ

Let’s assume that î and ĵ represent constant directions (that is, dî/dt = ~0 and dĵ/dt = ~0). Through
di↵erentiation with respect to time:

~v =
d~r

dt
= ẋî+ ẏĵ

~a =
d2~r

dt2
= ẍî+ ÿĵ



Discussion – Cartesian Description

~v = ẋî+ ẏĵ

~a = ẍî+ ÿĵ

From these equations, we see that the determination of the velocity and acceleration of a point
in Cartesian components depends on our ability to di↵erentiate the x and y components of its
position with respect to time. Let’s focus our attention to the di↵erence between the EXPLICIT
and IMPLICIT time dependence of these Cartesian components:

• If x and y are explicit functions of time, x(t) and y(t), then the Cartesian components for
velocity and acceleration vectors are found directly by time di↵erentiation of these functions.

• If the path of the point is given by the function y = f(x), for example, and the kinematics
are known for x(t) (y is an implicit function of time; x is an explicit function of time), then
we have to use the chain rule of di↵erentiation. In this particular case, we have:

ẏ =
dy

dt
=

d

dt
f(x) =

df

dx

dx

dt
= ẋ

df

dx

Consider the following example:

MOTIVATING EXAMPLE Suppose that y = sinx and ẋ = 3 m/s = constant, and we want
to know the velocity and acceleration when x = ⇡/2. The Cartesian components of velocity and
acceleration are given by:

ẏ =
dy

dt
=

dy

dx

dx

dt

= ẋ
d

dx
(sinx) = ẋ cosx ) ẏ = (3) cos

⇡

2
= 0 m/s

ÿ =
d

dt
(ẋ cosx) = ẍ cosx+ ẋ (�ẋ sinx)

= ẍ cosx� ẋ2 sinx ) ÿ = (0) cos
⇡

2
� (3)2 sin

⇡

2
= �9 m/s2

Therefore,

~v = ẋî+ ẏĵ = (3)̂i+ (0)ĵ = 3̂i m/s

~a = ẍî+ ÿĵ = (0)̂i+ (�9)ĵ = �9ĵ m/s2
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Path Kinematics
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Path kinematics 
The velocity of point P is given by the first time derivative 
of the position vector for P: 
 

 

 

v = dr
dt

= dr
ds

ds
dt

= v dr
ds

 

 
where the chain rule of differentiation has been used to 
introduce the path distance “s” into the kinematics and 
where v = ds/dt is the “speed” of the particle. 
 

By definition, the derivative 

 

dr
ds

 is: 

 

 

 

dr
ds

= lim
!s"0

!r
!s

 

 
where 

 

!r  is the change in the position vector 

 

r  as the 
particle moves a distance !s along its path (as shown in 
the figure where P has moved to P’). 
 

Two observations on the above derivative, dr
ds

: 

• As ! s! 0 , the chord length ! r  tends to the 
length of the arc length ! s  (see above figure): 

! r !! s . Therefore, dr
ds

 is a “unit vector” 

(magnitude of “1”). 
• As ! s! 0 , the vector ! r  becomes tangent to the 

path of P (see above figure). 
 

From, this we conclude that dr
ds

= et  = unit vector that is 

tangent to the path of P. Therefore, 
 
 v = vet  
 
Differentiation of the above with respect to time gives: 
 

   
!r +∆ !r

P 

∆s 

P’ 

  
!r

   ∆
!r

! 

! 

s 

  

êt = cos! î + sin! ĵ

ên = "sin! î + cos! ĵ #

d
d!

êt( ) = " sin! î + cos! ĵ = ên

d
d!

ên( ) = "cos! î " sin! ĵ = "êt

  ên

  êt

  ̂i

  ĵ

Recall that for the path description, the position of particle
P is given by a distance s measured along the path of P. The
velocity of point P is given by the first time derivative of the
position vector for P:

~v =
d~r

dt
=

d~r

ds

ds

dt
= v

d~r

ds

where the chain rule of di↵erentiation has been used
to introduce the path distance s into the kinematics
and where v = ds/dt is the “speed” of the parti-
cle.

By definition, the derivative
d~r

ds
is:

d~r

ds
= lim

�s!0

�~r

�s

where �~r is the change in the position vector ~r as the particle moves a distance s along its path
(as shown in the figure where P has moved to P’).

  êt = cos! î + sin! ĵ

 s

!

  êt

  ên

 path
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 path turning LEFT

Two observations on the above derivative,
d~r

ds
:

• As �s ! 0, the chord length |�~r | tends
to the length of the arc length �s (see
above figure): |�~r | ! �s. Therefore,
d~r/ds is a “unit vector” (magnitude of
“1”).

• As �s ! 0, the vector �~r becomes tan-
gent to the path of P (see above fig-
ure).

From this we conclude that d~r/ds = êt = unit
vector that is tangent to the path of P. Therefore,

~v = vêt



Di↵erentiation of the above with respect to time gives:

~a =
d~v

dt

=
d

dt
(vêt)

=
dv

dt
êt + v

dêt
dt

(product rule of di↵erentiation)

= v̇êt + v
dêt
ds

ds

dt
(chain rule of di↵erentiation)

= v̇êt + v2
dêt
d✓

d✓

ds
(chain rule of di↵erentiation and v =

ds

dt
)

  C = "center of curvature" (center of circle tangent to path having the same curvature as the path)

  ! = "radius of curvature" of path

  

ên = !sin" î + cos" ĵ

êt = cos" î + sin" ĵ #

dêt
d"

= !sin" î + cos" ĵ = ên

ds = +$d" #
d"
ds

=
1
$

%
dêt
d"

d"
ds

=
ên
$
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Consider the figures provided above showing the directions of the unit vectors êt and êt for left-
turning and right-turning paths. From these figures, we see that for both cases:

dêt
d✓

d✓

ds
=

1

⇢
ên

where ⇢ is the radius of curvature of the path. Using this relationship in the above gives:

~a = v̇êt +
v2

⇢
ên

which describes the acceleration of a particle in terms of its path components.



Discussion – Path Description

We have seen that the velocity and acceleration of a particle can be written in terms of its path
components by the following equations:

~v = vêt

~a = v̇êt +
v2

⇢
ên

• The velocity of a point is ALWAYS tangent to the path of the point. The magnitude of the
velocity vector is the known as the scalar “speed” v of the point.

• The acceleration of the point has two components:
– The component

�
v2/⇢

�
ên is normal to the path. This is commonly referred to as the

“centripetal” component of acceleration. This component is ALWAYS directed inward
to the path (positive n-component) since v2/⇢ > 0.

– The component v̇êt is tangent to the path. The magnitude of this component is the
“rate of change of speed” v̇ for the point.
⇤ When v̇ > 0 (increasing speed), the acceleration vector has a positive t-component

(i.e., forward of ên).
⇤ When v̇ = 0 (constant speed), the acceleration vector has a zero t-component (i.e.,
~a is aligned with ên). Note that constant speed does NOT imply zero acceleration!

⇤ When v̇ < 0 (decreasing speed), the acceleration vector has a negative t-component

(i.e., backward of ên). See figure below.

(increasing speed) 

(constant  
speed) 

(decreasing speed) 

  êt

  ên

  
!a   

!a

  
!a

  
!v

• ⇢ is the radius of curvature for the path of the particle. If the path is known to be circular,
⇢ is the radius of the circle. For a general path known in terms of its Cartesian coordinates
y = y(x), the radius of curvature can be calculated from:

⇢ =

"
1 +

✓
dy

dx

◆2
#3/2

����
d2y

dx2

����
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• The magnitude of the acceleration is given by the square root of the sum of the squares of its
path components:

|~a| =
q
v̇2 + (v2/⇢)2

Do not confuse the terms “rate of change of speed” and “magnitude of acceleration”:

– Rate of change of speed v̇ (as the name indicates) is the rate at which the speed changes
in time; it is simply the tangential component of acceleration.

– The magnitude of acceleration |~a| accounts for both the tangential and normal compo-
nents of acceleration, as shown in the above equation.

CHALLENGE QUESTION: The acceleration vector is the time derivative of the velocity vec-
tor: ~a = d~v/dt. In contrast, the scalar rate of change of speed is the time derivative of the scalar
speed: v̇ = dv/dt. As discussed above, the magnitude of acceleration is generally not the same as the
magnitude of the rate of change of speed: |~a| 6= |v̇|. Are there situations in which they are the same?

ANSWER: Since |~a| =
q
v̇2 + (v2/⇢)2, |~a| = |v̇| ONLY IF v2/⇢ = 0. This occurs when either: (i)

⇢ = 1 (straight-line, or rectilinear, motion), or (ii) v = 0 (particle instantaneously at rest). These
two situations are shown in the following figure.

  
!a

  
!v

 straight ! line motion

  
!a

  êt

 instantaneously at rest

  ên

  v = 0



Polar Kinematics

For the polar description, the following set of unit vectors will be used:

• êr: pointing from O to point P

• ê✓: perpendicular to êr and pointing in the “positive ✓ direction” (see the figure below)

Here we write the position vector of P as:

~r = rêr

The velocity of point P is given by the first time derivative of the position vector for P:

~v =
d

dt
(rêr) =

dr

dt
êr + r

dêr
dt

(product rule of di↵erentiation)

= ṙêr + r
dêr
d✓

d✓

dt
(chain rule of di↵erentiation)

  

êr = sin! î + cos! ĵ

ê! = cos! î " sin! ĵ
#

dêr
d!

= cos! î " sin! ĵ = ê!

dê!
d!

= " sin! î " cos! ĵ = "êr

r 

P 

O 

  ̂i

  ĵ
  êr

  ê!

!

!

!

Using the equations in the figure above, we can now write the velocity vector for P as:

~v = ṙêr + r✓̇ê✓

Using the product rule of di↵erentiation on the velocity vector above, we obtain:

~a =
d

dt
(ṙêr) +

d

dt

⇣
r✓̇ê✓

⌘
= r̈êr + ṙ

d

dt
(êr) + ṙ✓̇ê✓ + r✓̈ê✓ + r✓̇

d

dt
(ê✓)

From above, we know that
d

dt
(êr) = ✓̇ê✓, and through the use of the chain rule and the figure

above, it can be shown that:

d

dt
(ê✓) =

dê✓
d✓

d✓

dt
= �✓̇êr
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Therefore, we have:

~a = r̈êr + ṙ
⇣
✓̇ê✓

⌘
+ ṙ✓̇ê✓ + r✓̈ê✓ + r✓̇

⇣
�✓̇êr

⌘

=
⇣
r̈ � r✓̇2

⌘
êr +

⇣
r✓̈ + 2ṙ✓̇

⌘
ê✓



Discussion – Polar Description

~v = ṙêr + r✓̇ê✓

~a =
⇣
r̈ � r✓̇2

⌘
êr +

⇣
r✓̈ + 2ṙ✓̇

⌘
ê✓

• The values for the components of these vectors depend on your choice of the point O. There-
fore, you need to carefully define your choice of point O at the beginning of the problem and
stick with it throughout the problem.

• When the path of P is given as r = r(✓) you will need to use the chain rule of di↵erentiation

to find the time derivatives ṙ = dr/dt and r̈ = d2r/dt2 in terms of the time derivatives ✓̇ and
✓̈.

• These vector expressions use the components of velocity and acceleration projected on the po-
lar unit vectors êr and ê✓. These projections are usually more di�cult to determine than, say,
the Cartesian projections and have less physical significance than the path component pro-
jections. However, in many applications involving observers of motion, the polar expressions
are very useful.

CHALLENGE QUESTION: The path unit vectors (êt and ên) share characteristics with the
polar unit vectors (êr and ê✓) in that they move along with the particle and they change orientation
as the particle moves along its path. Can the two sets of unit vectors ever be aligned with each other?

ANSWER: As we know, the path unit vectors êt and ên are defined by the path. On the other
hand, the polar unit vectors êr and ê✓ depend on your choice of the observer O and the position of
the particle relative to O. One special case when they are somewhat aligned is when the particle
travels on a circular path with the observer O at the center of the circle, as shown in the figure
below left. Here, êt and ê✓ are aligned for all motion; êr points outward from O and ên points
inward toward the center of the path O. To emphasize how the orientation of êr and ê✓ depends on
the choice of O, consider moving O to another location, as shown below right. Here the two sets of
unit vectors are not aligned.

!

  êt , ê!

  ên

 O

 P

  êr

!

 O

 P

 C
  ên

  êr
  ê!

  êt
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Example 1.A.1

Given: Pin P is constrained to move along a elliptical ring whose shape is given by x2/a2+y2/b2 = 1
(where x and y are given in mm). The pin is also constrained to move within a horizontal slot that
is moving upward at a constant speed of v.

Find: Determine:
(a) The velocity of pin P at the position corresponding to y = 6 mm; and
(b) The acceleration of pin P at the position corresponding to y = 6 mm.

Use the following parameters in your analysis: a = 5 mm, b = 10 mm, v = 30 mm/s.

P

x

y

v

x2

a2
+
y2

b2
= 1

fixed ring



Example 1.A.2

Given: A particle P moves on a path whose Cartesian components are given by the following
functions of time (where both components are given in inches and time t is given in seconds):

x(t) = t3 + 10

y(t) = 2 cos 4t

Find: Determine at the time t = 2 s:
(a) The velocity vector of P;
(b) The acceleration of P; and
(c) The angle between the velocity and acceleration vectors of P.
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Example 1.A.3

Given: A jet is flying on the path shown below with a speed of v. At position A on the loop,
the speed of the jet is v = 600 km/hr, the magnitude of the acceleration is 2.5g and the tangential
component of acceleration is at = 5 m/s2.

Find: The radius of curvature of the path of the jet at A.

P

x

y

v

x2

a2
+
y2

b2
= 1

fixed ring

v

A

path of jet



Example 1.A.4

Given: Particle A travels on a path such that the radial position of A is given by r = 5✓, where r
is given in meters and ✓ in radians. It is also known that ✓̇ = 2 rad/s = constant.

Find: Determine:
(a) The velocity vector for A when ✓ = ⇡; and
(b) The acceleration vector for A when ✓ = ⇡.
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Example I.1.6 
Particle A travels on a path with the radial position of A given by r = 5! , with r in 
meters and !  in radians. It is also known that  !! = 2 rad / sec = constant . When ! = " , 
determine the velocity and acceleration vectors for A. 
 

r 
! 

A 



Chapter 1: Particle Kinematics Homework

Homework 1.A.21

Given: At one instant in time, an aircraft is traveling along a path in a direction defined by ✓
below the horizontal with the center of mass G of the aircraft having a speed of |~vG|. G is also
known to have an acceleration that is pointing vertically upward with a magnitude of |~aG|.

Find: For this given instant in time:

(a) show the path unit vectors êt and ên, along with ~vG and ~aG, in a sketch.

(b) determine the rate of change of speed of G and the radius of curvature of G.

  
!aG

  
!vG

 G θ

Use the following parameters in your work: ✓ = 36.87�, |~vG| = 900 km/hr and |~aG| = 30 m/s2.

Freeform c�2018 1-23

Example 1.A.5 



Example 1.A.6 

Chapter 1: Particle Kinematics Homework

Homework 1.A.24

Given: Particle P is able to slide along an arm that is rotating about end O. At the instant shown,
the arm is at an angle of ✓ measured clockwise from the vertical, the velocity of P is known to be
horizontal, and the acceleration of P is in a direction defined by the angle � from the horizontal,
all as shown in the figure.

Find: For position of ✓ = 30�:

(a) show the position of P and the polar unit vectors êR and ê✓, along with ~vP and ~aP , in a sketch.

(b) determine numerical values for Ṙ, R̈, ✓̇ and ✓̈.

 Rθ

φ
  
!vP

  
!aP

 P

 O

Use the following parameters in your work: R = 2m, |~vP | = 8 m/s and |~aP | = 20 m/s2.

1-26 Freeform c�2018


