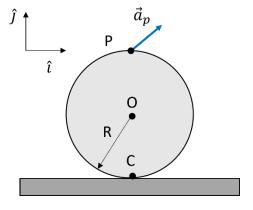
Name

Given: A disk of radius *R* is rolling without slipping on a rough stationary surface. The acceleration of point P is $\vec{a}_p = a_x \hat{i} + a_y \hat{j}$. At the time of analysis points P, O, and C are all on the same vertical line. Point O is the center of the disk. Point C is in contact with the stationary surface.


Find: The angular acceleration of the disk. Report your answer in terms of at most a_x , a_y , and R.

Solution:

 $\vec{a}_{P} = \vec{a}_{C} + \vec{\alpha} \times \vec{r}_{P/C} - \omega^{2} \vec{r}_{P/C}$ $\vec{a}_{C} = a_{C} \hat{j}$ $\vec{r}_{P/C} = 2R \hat{j}$ $a_{x} \hat{\imath} + a_{y} \hat{j} = a_{C} \hat{j} + \alpha \hat{k} \times 2R \hat{j} - \omega^{2} 2R \hat{j}$ $\alpha \hat{k} \times 2R \hat{j} = -2\alpha R \hat{\imath}$ $\hat{\imath} = a_{x} = -2\alpha R$

 $\vec{\alpha} = -\frac{a_x}{2R}\hat{k}$

 \Rightarrow

