
Particle P of mass m being pulled along a rough (not smooth), curvy surface by force F from Position 1 to Position 2. The spring is unstretched at Position 1.



## Question Q1

Spring potential energy at position 2,  $\left(V_{2}\right)_{sp}$ :

a) 
$$(V_2)_{sp} = \frac{1}{2}kd^2$$

a) 
$$(V_2)_{sp} = \frac{1}{2}kd^2$$
  $L_2 = \sqrt{L_1^2 + d^2} = \sqrt{d^2 + h^2}$ 

b) 
$$(V_2)_{sp} = \frac{1}{2}kh^2$$

$$\Delta_2 = \frac{1}{2} k (L_2 - L_1)^2$$

c) 
$$(V_2)_{sp} = \frac{1}{2}k(d-2h)^2$$

b) 
$$(V_2)_{sp} = \frac{1}{2}kh^2$$
  $\Delta_2 = \frac{1}{2}k(L_2 - L_1)^2$   
c)  $(V_2)_{sp} = \frac{1}{2}k(d-2h)^2$   $= \frac{1}{2}k(\sqrt{d^2+h^2} - 2h)^2$ 

d) 
$$(V_2)_{sp} = \frac{1}{2}k(d^2 - 4h^2)$$

e) 
$$(V_2)_{sp} = \frac{1}{2}k(\sqrt{d^2 + h^2} - 2h)^2$$

f) more information is needed about the shape of the guide in order to determine  $(V_2)_{sp}$ .

## **Question Q2**

Work done by friction,  $U_{1\rightarrow 2}^{(f)}$ :

a) 
$$U_{1\to 2}^{(f)} > 0$$

b) 
$$U_{1\to 2}^{(f)} = 0$$

c) 
$$U_{1\to 2}^{(f)} < 0$$

d) more information is needed about the shape of the guide in order to determine the sign of  $U_{1\rightarrow 2}^{(f)}$ .

## **Question Q3**

Change in gravitational potential,  $\Delta V_{gr} = (V_2)_{gr} - (V_1)_{gr}$ 

a) 
$$\Delta V_{gr} > 0$$

b) 
$$\Delta V_{gr} = 0$$

c) 
$$\Delta V_{gr} < 0$$

$$\Delta \nabla_{gr} = \nabla_2 - \nabla_1 = -mgh$$

d) more information is needed about the shape of the guide in order to determine the sign of  $\Delta V_{or}$ .

## **Question Q4**

**Speed of P** at position 2,  $v_2$ , as compared to the speed at position 1,  $v_1$ :

- a)  $v_2 > v_1$
- b)  $v_2 = v_1$
- c)  $v_2 < v_1$
- d) more information is needed about problem in order to compare  $v_1$  and  $v_2$
- · Vspand DVgrave poon rdependent
  · Ti(f) is poolin dependent