Example 14.7

The L-shaped frame ABC has a square cross section of side dimension b . This frame is supported by a fixed pin at A and by a roller at C. Determine the maximum principal stresses and the maximum in-plane shear stress at points D and E in the cross section at the location at a distance of d from A.

SOLUTION

From the FBD of the frame:

$$
\sum M_{A}=C_{x} L-P(L \sin \theta)=0 \Rightarrow C_{x}=P \sin \theta
$$

From the FBD of the cut section:

$$
\begin{aligned}
& \sum M_{H}=-M-(P \sin \theta)(L \cos \theta-d)+\left(C_{x} \cos \theta\right)(L \cos \theta-d) \\
& \quad-\left(C_{x} \sin \theta\right)(L \sin \theta)=0 \Rightarrow \\
& M=\left[\sin \theta(\cos \theta-1)(L \cos \theta-d)-L \sin ^{3} \theta\right] P \\
& \sum F_{x}=C_{x}-F \sin \theta+V \cos \theta=0 \Rightarrow-F \sin \theta+V \cos \theta=-P \sin \theta \\
& \sum F_{x}=F \cos \theta+V \sin \theta-P=0 \Rightarrow F \cos \theta+V \sin \theta=P
\end{aligned}
$$

Solve the above two equations for the internal reactions F and V.
Stress distribution at cut:
σ_{1}

t

At D:

$$
\begin{aligned}
& \sigma=\sigma_{1}=\frac{F}{A} ; A=b^{2} \\
& \tau=\left(\tau_{3}\right)_{\max }=\frac{3 V}{2 A}
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
& \sigma_{\text {ave }}=\frac{\sigma}{2}=\frac{F}{2 A} \quad ; \quad R=\sqrt{\left(\frac{\sigma}{2}\right)^{2}+\tau^{2}}>\sigma_{a v e} \\
& \sigma_{P 1}=\sigma_{a v e}+R>0 \\
& \sigma_{P 2}=\sigma_{\text {ave }}-R<0 \\
& \left(\tau_{\text {max }}\right)_{\text {in-plane }}=R
\end{aligned}
$$

At $E:$

$$
\begin{aligned}
& \sigma=\sigma_{1}-\left(\sigma_{2}\right)_{\max }=\frac{F}{A}-\frac{M(b / 2)}{I} ; A=b^{2} \text { and } I=b^{4} / 12 \\
& \tau=0
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
& \sigma_{\text {ave }}=\frac{\sigma}{2}=\frac{F}{2 A}-\frac{M b}{4 I} ; \quad R=\sqrt{\left(\frac{\sigma}{2}\right)^{2}+0}=\sigma_{a v e} \\
& \sigma_{P 1}=\sigma_{\text {ave }}+R=2 \sigma_{\text {ave }} \\
& \sigma_{P 2}=\sigma_{\text {ave }}-R=0 \\
& \left(\tau_{\text {max }}\right)_{\text {in-plane }}=R=\sigma_{\text {ave }}
\end{aligned}
$$

