Example 16.10

An elastic rod BC of uniform cross section is bent into the form of a three quarter $\left(270^{\circ}\right)$ circle such that its mean radius is R. The rod is fixed to a wall at B and is pinned to a roller at C. The rod is composed of a material of Young's modulus E, and the second area moment of the cross section is I. A downward load P is applied at end C of the rod as shown in Fig 9.3. Assuming that elastic strain energies due to shear and axial loads are negligible as compared to bending strain energy:
a) Set up the integral to calculate the total bending strain energy in the rod BC as a function of load P, the unknown reaction F_{C} at C , and the angle θ.
b) Use Castigliano's theorem to determine the reaction force F_{C}.
c) Use Castigliano's theorem to determine the downward deflection of end C.

Fig 9.4

Solution

From FBD of segment CD,

$$
\begin{aligned}
& \Sigma M_{D}=M_{\theta}+P R \sin \theta+F_{C} R(1-\cos \theta)=0 \\
& \Rightarrow M_{\theta}=-P R \sin \theta-F_{C} R(1-\cos \theta)
\end{aligned}
$$

Therefore:

$$
U(\theta)=\int_{0}^{L C D} \frac{M_{\theta}^{2}}{2 E I} d\left(L_{C D}\right)
$$

where, $d\left(L_{C D}\right)=d(R \theta)=R$

$$
\Rightarrow U(\theta)=\int_{0}^{\theta} \frac{M_{\theta}^{2} R}{2 E I} d \theta
$$

Total strain energy in

BC:

$$
U_{B C}=\frac{R}{2 E I} \int_{0}^{\frac{3 \pi}{2}} M_{\theta}^{2} d \theta=\frac{R}{2 E I} \int_{0}^{\frac{3 \pi}{2}} R^{2}\left[P \sin \theta+F_{C}(1-\cos \theta)\right]^{2} d \theta
$$

Boundary condition at C: Horizontal deflection at $\mathrm{C}, u_{C}=0$. Since the horizontal load at C is F_{C},

$$
\frac{\partial U_{B C}}{\partial F_{C}}=0
$$

Using the fundamental theorem of calculation (Leibnitz' rule of differentiation within an integral) on (3.3),

$$
\begin{aligned}
& \frac{\partial U_{B C}}{\partial F_{C}}=\frac{R}{2 E I} \int_{0}^{\frac{3 \pi}{2}} \frac{\partial\left\{R^{2}\left[P \sin \theta+F_{C}(1-\cos \theta)\right]^{2}\right\}}{\partial F_{C}} d \theta=0 \\
& \Rightarrow \frac{R^{3}}{2 E I} \int_{0}^{\frac{3 \pi}{2}} 2\left(P \sin \theta+F_{C}(1-\cos \theta)\right)(R(1-\cos \theta)) d \theta=0 \\
& \quad \Rightarrow \int_{0}^{\frac{3 \pi}{2}} P R \sin \theta(1-\cos \theta)+F_{C} R(1-\cos \theta)^{2} d \theta=0 \\
& \Rightarrow \int_{0}^{\frac{3 \pi}{2}} P R \sin \theta(1-\cos \theta) d \theta+\int_{0}^{\frac{3 \pi}{2}} F_{C} R(1-\cos \theta)^{2} d \theta=0 \\
& \quad \Rightarrow \frac{P R}{2}+F_{C} R\left(2+\frac{9 \pi}{4}\right)=\frac{2 P}{4}+F_{C}\left(\frac{8+9 \pi}{4}\right)=0 \\
& \quad \Rightarrow F_{C}=-\frac{2 P}{8+9 \pi}=-0.055 P \#(4.4)
\end{aligned}
$$

Downward deflection at end C using Castigliano's theorem,

$$
\begin{gathered}
v_{C}=\frac{\partial U_{B C}}{\partial P}=\frac{R}{2 E I} \int_{0}^{\frac{3 \pi}{2}} \frac{\partial\left\{R^{2}\left[P \sin \theta+F_{C}(1-\cos \theta)\right]^{2}\right\}}{\partial P} d \theta \\
\left.\Rightarrow v_{C}=\frac{R^{3}}{2 E I} \int_{0}^{\frac{3 \pi}{2}} 2\left(P \sin \theta+F_{C}(1-\cos \theta)\right) \sin \theta\right) d \theta \\
\Rightarrow v_{C}=\frac{P R^{3}}{E I} \int_{0}^{\frac{3 \pi}{2}} \sin ^{2} \theta d \theta+\frac{F_{C} R^{3}}{E I} \int_{0}^{\frac{3 \pi}{2}} \sin \theta(1-\cos \theta) d \theta=\frac{P R^{3}}{E I}\left(\frac{3 \pi}{4}\right)+\frac{F_{C} R^{3}}{E I}\left(\frac{1}{2}\right) \#(4.5)
\end{gathered}
$$

Substituting (3.4) into (3.5),

$$
\Rightarrow v_{C}=\frac{P R^{3}}{4 E I}(3 \pi+2(-0.055))=2.329 \frac{P R^{3}}{E I}
$$

