ME 323 — Mechanics of Materials

Lecture 6: Axial deformation—
Statically determinate
structures

Joshua Pribe
Fall 2019
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Corrections from last class

Shear stresses

Example 5.8, Part (c)
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Review of last class

Hooke’s law
Normal strains Shear strains Shear modulus
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Objectives

* Review assumptions for axial deformation

* Relate the elongation of an axial member with the axial force on the member
* What further simplifying assumptions can we make?



General axial deformation

Deformation due to a distributed axial load p(X) Key equations

before deformation

after deformation

u(x) [ u(x+ Ax)

elongation
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General axial deformation (cont.)

Deformation due to a distributed axial load p(X) Key equations
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Analogy with a spring

Spring
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Axially-loaded bar
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Procedure for axial loading problems

* Drawn an FBD of each element
* One “element” has constant or smoothly varying internal axial force, properties, and cross-sectional area

* Enforce static equilibrium to find the internal axial force in each element

* Use the force-elongation equations to find the elongation of each element

FL
« Constant internal force, properties, and cross-sectional area: e =u(L)—-u(0) = E

e Otherwise: e=u(L)—-u(0) = I A(I):()(é)(x) X

0
* We can also use the elongation of each member to find displacement at points of interest

* Note: practice doing this in reverse!



