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Corrections from last class
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Shear stresses

Example 5.8, Part (c)
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Review of last class

Hooke’s law
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Objectives

• Review assumptions for axial deformation

• Relate the elongation of an axial member with the axial force on the member
• What further simplifying assumptions can we make?
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General axial deformation
Deformation due to a distributed axial load p(x)
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Key equations



General axial deformation (cont.)
Deformation due to a distributed axial load p(x)
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Key equations



Analogy with a spring
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Procedure for axial loading problems

• Drawn an FBD of each element
• One “element” has constant or smoothly varying internal axial force, properties, and cross-sectional area

• Enforce static equilibrium to find the internal axial force in each element

• Use the force-elongation equations to find the elongation of each element

• Constant internal force, properties, and cross-sectional area:

• Otherwise:  

• We can also use the elongation of each member to find displacement at points of interest

• Note: practice doing this in reverse!
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