Lecture 31: Stress transformation – Principal stresses and maximum shear stress

Joshua Pribe

Fall 2019

Lecture Book: Chapter 13

Motivation

- There is only one state of stress at a point
- BUT we can express that state of stress in different coordinate systems
 - A material could fail on a surface that does *not* correspond to our *x*, *y*, or *z* axes

Recall a general 3-D state of stress (Chapter 5)

States of stress: Plane stress

Many engineering components are in a state of "plane stress" For plane stress in the *x*-*y* plane: $\sigma_x \neq 0$, $\sigma_y \neq 0$, $\tau_{xy} \neq 0$

 $\sigma_z = 0, \ \tau_{xz} = 0, \ \tau_{yz} = 0$

Plane stress examples

Each type of deformation we have looked at so far, along with combinations of each of them **BENDING BEAM**

TORSIONALLY AND AXIALLY LOADED SHAFT

THIN-WALLED PRESSURE VESSEL

Lecture Book: Ch. 13, pg. 3

Stress transformation for plane stress

Goal: Find an expression for $\sigma_n, \sigma_t, \tau_{nt}$ from $\sigma_x, \sigma_y, \tau_{xy}$

To do this, enforce equilibrium on the following cut:

5

e end up with:

$$\sigma_{n} = \sigma_{x} \cos^{2} \theta + \sigma_{y} \sin^{2} \theta + \tau_{xy} \left(2\sin\theta\cos\theta \right)$$

$$\tau_{nt} = -\left(\sigma_{x} - \sigma_{y}\right) \cos\theta\sin\theta + \tau_{xy} \left(\cos^{2} \theta - \sin^{2} \theta\right)$$

Stress transformation for plane stress

 θ measured CCW from *x* axis

 σ > 0 for tension

 $\tau_{ii} > 0$ for shear stress on the positive *i* face in the positive *j* direction

Lecture Book: Ch. 13, pg. 6

Remember: each set of stresses (σ_x , σ_y , τ_{xy} and σ_n , σ_t , τ_{nt}) represent the *same* stress state, just with respect to different coordinate axes 6

Example 13.1

Determine the stresses on a plane whose orientation is a 40° CCW rotation from the x-axis

Special states of stress

We want to predict *failure* of a component

 \rightarrow we are often interested in the *maximum normal stresses* and *maximum shear stress* The maximum normal stresses are called <u>principal stresses</u>

From the stress transformation equation, how do we find the extrema of σ_n ?

$$\sigma_n = \left(\frac{\sigma_x + \sigma_y}{2}\right) + \left(\frac{\sigma_x - \sigma_y}{2}\right) \cos 2\theta + \tau_{xy} \sin 2\theta$$

Principal stresses

Maximum in-plane shear stress

Example 13.2

For the stress state shown, determine: -The in-plane principal stresses and their orientation -The maximum in-plane shear stress and its orientation

Example 13.3

The state of plane stress at a point shown below can be described by a known tensile stress $\sigma_x = 70MPa$, and unknown tensile stress σ and an unknown shear stress τ . At this point, the maximum in-plane shear stress is known to be 78 *MPa*, and one of the two in-plane principal stresses is 22 *MPa* (in tension).

Determine the values of σ and τ , as well as the other in-plane principal stress.

Summary for principal stresses

The shear stress is zero on the principal planes! $\tau_{nt} \left(\theta_{p1} \right) = \tau_{nt} \left(\theta_{p2} \right) = 0$

Summary for maximum in-plane shear stress

We can use the following equations to calculate the maximum and minimum in-plane shear stress given $\sigma_x, \sigma_y, \tau_{xy}$

Maximum
n-plane
$$\tau_{max} = \tau_{s1} = R$$
 $\theta_{s1} = \theta_{p1} + 45^{\circ}$ $\sin(2\theta_{s1}) = -\frac{\sigma_x - \sigma_y}{2R}$ $\cos(2\theta_{s1}) = \frac{\tau_{xy}}{R}$

in-plane $au_{min} = au_{s2} = -R = - au_{max}$ $heta_{s2} = heta_{s1} + 90^{\circ}$ shear stress

$$\sigma_{avg} = \frac{\sigma_x + \sigma_y}{2} \qquad \qquad R = \sqrt{\frac{\left(\sigma_x - \sigma_y\right)^2}{4} + \tau_{xy}^2}$$

Both normal stresses are equal to the *average* normal stress in a maximum or minimum shear stress state

$$\sigma_n\left(\theta_{s1,s2}\right) = \sigma_t\left(\theta_{s1,s2}\right) = \sigma_{avg}$$

Summary

- The in-plane principal stresses are:
 - The max and min in-plane normal stresses
 - Found at orientations with no shear stress
 - Always on planes 90° apart

- The max and min in-plane shear stresses are:
 - Equal in magnitude
 - Found at orientations where the normal stresses are both equal to $\sigma_{ave} = (\sigma_x + \sigma_y)/2$
 - Always on planes 45° away from principal stress planes

Visualizing stress transformations

http://web.mst.edu/~mecmovie/