
Chapter 5. Stress and strain: generalized concepts 
 
Objectives: 
To study the relationships between stress and strain due to a three-dimensional loading of a 
body. 
 
 
Background: 

• Stress-strain relationship for uni-axial loading (loading in the x-direction): 
 

 

� 

εx = σ x
E

 

 

� 

εy = εz = −νσ x
E

 

 
• Stress-strain relationship for pure shear loading (loading in y-direction on face 

perpendicular to x-axis): 
 
 

 

� 

γ xy =
τ xy
G

 

 
 
 
 
Lecture topics: 

a) Resolution of internal forces into normal and tangential (shear) components 

b) Thermal strains 

c) Generalized Hooke’s law for normal stresses/strains 

d) Generalized Hooke’s law for shear stresses/strains 
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Lecture Notes 
 
a) Resolution of internal force into normal and tangential (shear) components 
 
Consider a general 3-D loading on a component: 
 

 
 
Making cut through body parallel to yz-plane: 

 

 σ x  is the normal stress on the +x-face, and 
 
τ xy  and  τ xz  are the components of shear stress 

on the x-face in the y- and z-directions, respectively. 
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Next, making a cut through body parallel to xz-plane: 
 

 
 

 
σ y  is the normal stress on the +y-face, and 

 
τ yx  and  

τ yz  are the components of shear 

stress on the +y-face in the x- and z-directions, respectively. 
 

Next, making a cut through body parallel to xy-plane: 
 

 
 

 σ z  is the normal stress on the +z-face, and  τ zx  and  
τ zy  are the components of shear stress 

on the +z-face in the x- and y-directions, respectively. 
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 +x face
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 + y face
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Suppose that we continue with an additional set of three cuts through the body at this 
point of interest, chosen here as the origin of the xyz-axes, with these cuts representing 
the –x, –y and –z planes. Following these cuts, we are left of a six-sided “stress element” 
whose sides are made up of the  ±x ,  ± y  and  ±z faces. As shown below, we have three 
components of stress (one normal and two shear) on each face.  

 
From this, we introduce the concept of a stress element as a cube of infinitesimal 
dimensions centered on the point of interest in the body. 
 
Naming convention 

•  σ i  is the normal stress on face “i”.  

•  
τ ij  is the shear stress on face “i” in the “j” direction. 

Sign convention – signs for components of stress on a stress element 
• A normal stress  σ i  is positive (negative) if it points 

outward (inward) on face “i” of the element, for 
  i = x, y, z . Note that a positive (negative) normal stress 
corresponds to tension (compression). 

• A shear stress  
τ ij  is positive if it points in the positive 

(negative) j-direction on the positive (negative) i-face 
of the stress cube. Otherwise, the shear stress is 
negative. 
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Number of unique stress components for a 3D state of stress 
In total, we have six components of normal stress: 

 
  
σ x ,σ y ,σ z , ′σ x , ′σ y , ′σ z( )    

and twelve components of shear stress: 

 
  
τ xy ,τ xz ,τ yx ,τ yz ,τ zx ,τ zy , ′τ xy , ′τ xz , ′τ yx , ′τ yz , ′τ zx , ′τ zy( )   

on the stress element. 
 
Using static equilibrium equations for the cube, the following relations can be derived 
relating these stresses: 
 

 

′σ x =σ x ′σ y =σ y ′σ z =σ z

′τ xy = τ xy = ′τ yx = τ yx ′τ yz = τ yz = ′τ zy = τ zy ′τ zx = τ zx = ′τ xz = τ xz
  

 

In summary, there are, in total, only three unique normal stresses 
  
σ x ,σ y ,σ z( )  and three 

unique shear stresses acting on the cube
  
τ xy ,τ xz ,τ yz( ) .  

 
Special case: state of plane stress in the xy-plane 
If all components of stress are acting on only the x- and y-faces, we see the following 
looking down the z-axis. All stress components shown in the figure below are positive 
according to the sign conventions defined above. 
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b) Thermal strains 
As a result of a uniform increase in temperature , most engineering materials will 
experience a uniform extensional strain in all three directions. This extensional strain is 
proportional to the temperature increase . Consider the cube shown below that is given 
a uniform temperature increase: 
 

 
 
The thermal strains induced by the temperature increase are found from the usual 
definitions: 
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Since this thermal strain is uniform and is proportional to , we can write these as: 

 
  
εx,T = ε y,T = εz,T = α ΔT  

where α  is the coefficient of thermal expansion (having units of 1/°F, or 1/°C). 
 
Note that temperature changes produce only extensional strains (no shear strains). 
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c) Generalized Hooke’s law for normal stresses/strains 
Recall that for uni-axial loading along the x-axis, the normal strains in the x, y and z 
directions in the body were found to be: 
   εx = σ x / E  

 
  
ε y = εz = −νεx = −νσ x / E  

where E and ν  are the Young’s modulus and Poisson’s ratio for the material. For a 3-D 
loading of a body, we have three normal stress components  σ x , 

 
σ y  and  σ z  acting 

simultaneously. For this case, we will consider the strains due to each normal component 
of stress individually and add these together using linear superposition (along with the 
thermal strains) to determine the resulting three components of strain  εx , 

 
ε y  and  εz . 

Consider the individual contributions of the three components of stress shown below: 
 
Strains due to mechanical 
loading in the x-direction 

Strains due to mechanical 
loading in the y-direction 

Strains due to mechanical 
loading in the z-direction 

   
 

  

εx = σ x / E

ε y = −νεx = −νσ x / E

εz = −νεx = −νσ x / E

 

 

 

  

εx = −νε y = −νσ y / E

ε y = σ y / E

εz = −νε y = −νσ y / E

 

 

  

εx = −νεz = −νσ z / E

ε y = −νεz = −νσ z / E

εz = σ z / E

 

The total strain in each direction is found through superposition of the individual strains 
along with the thermal strains. Adding together these components (across each row of the 
above table) gives: 

 
  
ε x =

1
E
σ x −

ν
E
σ y −

ν
E
σ z +αΔT = 1

E
σ x −ν σ y +σ z( )⎡
⎣

⎤
⎦ +αΔT  

 
  
ε y = − ν

E
σ x +

1
E
σ y −

ν
E
σ z +αΔT = 1

E
σ y −ν σ x +σ z( )⎡
⎣

⎤
⎦ +αΔT  

 
  
ε z = − ν

E
σ x −

ν
E
σ y +

1
E
σ z +αΔT = 1

E
σ z −ν σ x +σ y( )⎡
⎣

⎤
⎦ +αΔT  

The above are known as the generalized Hooke’s law equations for normal stresses/strains 
due to 3-D loadings on a body. 
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Observation: 
Note from the preceding equations that thermal strains can exist in the absence of stresses; 
that is, if   

σ x =σ y =σ z = 0 , we still have: 
 
ε x = ε y = ε z =αΔT . Later on in the course, we 

will observe that stresses from thermal loadings can develop only in the presence of 
mechanical forces. In particular, a body that is heated in the absence of displacement 
constraints will be stress-free.  
 
 
(e) Generalized Hooke’s law for shear stresses/strains 

It can be shown that the three components of shear stress, 
  
τ xy ,τ xz ,τ yz( )  are related to the 

corresponding shear strains 
  
γ xy ,γ xz ,γ yz( )  by the following equations: 

 
 
γ xy =

τ xy

G  

  
γ xz =

τ xz
G  

  
γ yz =

τ yz

G
 

where G is the shear modulus of the material. 
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Example 5.3  
 
Determine the state of strain that corresponds to the following 3-D state of stress at a 
certain point in a steel machine component: 
  

 
σ x = 60 MPa ; σ y = 20 MPa ; σ z = 30 MPa
τ xy = 20 MPa ; τ xz = 15 MPa ; τ yz = 10 MPa

 

 
Use   E = 210 GPa  and  ν = 0.3  for steel. 
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Example 5.4 
 
Recall the general definition of strain. Find the normal and shear strains along x and y at 
point D. 

 
  
  

x

y

300 mm

400 mmD

B

C

A

2 mm

2 mm

4 mm

5 mm



Stress and strain: generalized concepts Chapter 5: 11 ME 323 

Example 5.6 
 
When thin sheets of material, like the top “skin” of the airplane wing in the following 
figure is subjected to stresses, they are said to be in a state of plane stress, with 

0z xz yzσ τ τ= = = . For the case that 0TΔ = , show that the Hooke’s may can be written 
as 
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Example 5.8 
 
A block of linearly elastic material (E,v) is compressed between two rigid, perfectly 
smooth surfaces by an applied stress 0xσ σ= − . A non-zero stress yσ is induced by the 
restraining surfaces at y = 0 and y = b.  

(a) Determine the value of the restraining stress yσ .  

(b) Determine aΔ , the change in the x dimension of the block. 

(c) Determine the change tΔ in the thickness in the z direction.  
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Example 5.9 
 
A thin, rectangular plate is subjected to a uniform biaxial state of stress 

  
σ x ,σ y( ) . All other 

components of stresses are zero. The initial dimensions of the place at Lx = 4  in. and Ly = 2 
in., but after the loading is applied, the dimensions are *

xL  = 4.00176 in., and *
yL  = 

2.00344 in. If it is known that xσ = 10 ksi and E = 10×103 ksi:  

(a) What is the value of the Poisson’s ratio? 

(b) What is the value of yσ ? 
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Additional notes: 
 
 
 


