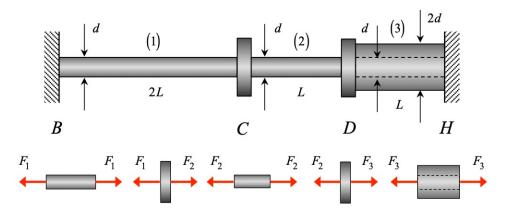
PROBLEM #1 (25 Points):

A rod is made up of elastic members (1), (2) and (3), with the material makeup of each member having a Young's modulus of E and a coefficient of thermal expansion of α . Members (1), (2) and (3) have lengths of 2L, L and L, respectively. Members (1) and (2) have solid cross-sections with a diameter of d, whereas member (3) has a tubular cross-section with inner and outer diameters of d and 2d, respectively. With the members being initially unstressed, the temperatures of (1) and (2) are increased by amounts of $2\Delta T$ and ΔT , respectively, while the temperature of (3) is held constant.

As a result of the temperature changes described above:

- a) Determine the axial load (force) carried by each member. State whether each member is experiencing a compressive or tensile load.
- b) Determine the axial strain in each member. Include an appropriate sign with each strain.

Leave your answers in terms of, at most, E, α , L, d and ΔT .



1. Equilibrium

(1) (C):
$$\sum F = -F_1 + F_2 = 0 \implies F_1 = F_2$$

(2) (D): $\sum F = -F_2 + F_3 = 0 \implies F_3 = F_2$

2. Force/elongation

(3)
$$e_1 = \frac{F_1(2L)}{EA_1} + \alpha (2\Delta T)(2L)$$
; $A_1 = \pi \left(\frac{d}{2}\right)^2$
(4) $e_2 = \frac{F_2L}{EA_2} + \alpha \Delta TL$; $A_2 = \pi \left(\frac{d}{2}\right)^2$
(5) $e_3 = \frac{F_3L}{EA_3}$; $A_3 = \pi \left(\frac{2d}{2}\right)^2 - \pi \left(\frac{d}{2}\right)^2 = \frac{3}{4}\pi d^2$

3. Compatibility

$$u_{C} = u_{B} + e_{1} = e_{1}$$

$$u_{D} = u_{C} + e_{2} = e_{1} + e_{2}$$

(6) $u_{H} = u_{D} + e_{3} = e_{1} + e_{2} + e_{3} = 0$

4. Solve

$$(3)-(6) \Rightarrow 2\frac{F_1L}{E\pi(d^2/4)} + 4\alpha\Delta TL + \frac{F_2L}{E(d^2/4)} + \alpha\Delta TL + \frac{F_3L}{E(3d^2/4)} = 0 \Rightarrow$$

$$8\frac{F_1}{E\pi d^2} + 5\alpha\Delta TL + 4\frac{F_2}{Ed^2} + \frac{4}{3}\frac{F_3}{Ed^2} = 0 \Rightarrow$$

$$8F_1 + 4F_2 + \frac{4}{3}F_3 = -5\pi\alpha\Delta TLEd^2$$

Combining with (1) gives:

$$\left(8+4+\frac{4}{3}\right)F_1 = -5\pi\alpha\Delta TLEd^2 \implies F_1 = F_2 = F_3 = -\frac{3}{8}\pi\alpha\Delta TLEd^2 \quad (compression)$$

Strains

$$\varepsilon_{1} = \frac{e_{1}}{2L} = \frac{4F_{1}}{E\pi d^{2}} + 2\alpha\Delta T = \frac{4F_{1}}{E\pi d^{2}} \left(-\frac{3}{8}\pi\alpha\Delta TLEd^{2}\right) + 2\alpha\Delta T = \frac{1}{2}\alpha\Delta T$$

$$\varepsilon_{2} = \frac{e_{2}}{L} = \frac{4F_{2}}{E\pi d^{2}} + \alpha\Delta T = \frac{4}{E\pi d^{2}} \left(-\frac{3}{8}\pi\alpha\Delta TLEd^{2}\right) + \alpha\Delta T = -\frac{1}{2}\alpha\Delta T$$

$$\varepsilon_{3} = \frac{e_{3}}{L} = \frac{4F_{3}}{3E\pi d^{2}} = \frac{4}{3E\pi d^{2}} \left(-\frac{3}{8}\pi\alpha\Delta TLEd^{2}\right) = -\frac{1}{2}\alpha\Delta T$$

ME 323 - Mechanics of Materials Examination #1 October 1st, 2020

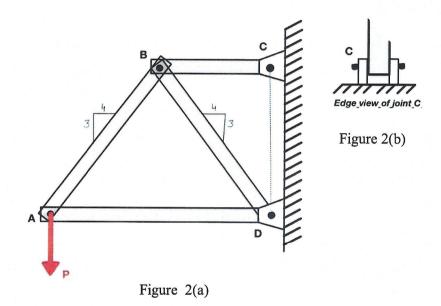
Name (Print) SOLUTION (Last) (First)

PROBLEM # 2 (25 points)

The critical components for the design of the planar truss in Figure 2a are considered to be member AB and the pin at C (shown in Figure 2b). The truss is subjected to a single downward force P at A. All members of the truss have a cross-sectional area of A=1 in². The cross-sectional area of the pin at C is Ac =0.5 in². The factor of safety (FS) against failure of AB by yielding is FS_{AB} = 3. The factor of safety against ultimate shear failure of the double-sided pin at C is $FS_C = 4$.

For member AB, σ_Y =36 ksi and for the pin material τ_U =48 ksi.

Find the largest P that can be applied without failure of the member AB and pin C.



PROBLEM #2 Più A A FAD APPROVED FOR USE IN PURDUE UNIVERSITY FORM C $F_{AB} = \frac{SP}{3}$ $\Sigma F_{y} = \frac{3}{5} F_{AB} - P = 0$ Pin B B FBC FAD FBD EFX = FBC+ HFBD - HFAB = 0 $\Sigma F_{2} = -\frac{3}{5}F_{AB} - \frac{3}{5}F_{BD} = 0$ $F_{BD} = -F_{AB} = -\frac{5P}{3}$ $F_{BC} = \frac{4}{5}F_{AB} - \frac{4}{5}F_{BD}$ = \[\[\[\] [\] - \[\] [- \[\] [- \[\] [- \[\]] $F_{BC} = \frac{8}{3}E$

 $\overline{G}_{AB} = \frac{\overline{F}_{AB}}{\overline{A}} = \frac{\overline{5P}}{\overline{3}} = \overline{T}_{\overline{AB}}$ $(FS)_{AB} = \frac{\nabla y}{\nabla_{AB}} = 3 = p \quad \nabla_{AB} = \frac{\nabla y}{3}$ APPROVED FOR USE IN $\int \frac{5P}{3} = \frac{36 \text{ ksi}}{3} = 12 \text{ ksi}$ $P_{AB} = \frac{3}{5}(12) = 7200 lb. = \frac{36}{5}$ For $pm = \frac{F_{3c}}{2} = \frac{F_{3c}}{3100} P$ $F_{BC} = \frac{F_{3c}}{2} = \frac{F_{3c}}{3100} P$ $V_{pin} = \frac{F_{3c}}{2} = \frac{F_{3c}}{3100} P$ $V_{\text{pin}} = \frac{4}{3}P$ $Z_{pm} = \frac{V_{pm}}{A_p} = \frac{4}{3}\frac{P}{D_s} = \frac{8}{3}\frac{P}{P} = Z_{pm}$ $(FS)_{pm} = \frac{\overline{L}U}{\overline{L}pm} = \overline{Z}pm = \frac{\overline{L}V}{(FS)pm} = \frac{48}{4} = 12 \pm si$ $\frac{8}{3}P = 12$ ksi (1) $P_{pin} = \frac{36}{8}$ ksi = 4,500 R_{6} Pallow = 4,500 lb] Smallert

$$\frac{2L}{(3)}$$

$$\frac{2L}{(3)}$$

$$\frac{2L}{(3)}$$

$$\frac{1}{12}\int_{2J}^{2J}\int_{4J}^{4J}$$

$$\frac{1}{2J}\int_{2J}^{2J}\int_{4J}^{4J}$$

$$\frac{1}{2J}\int_{2J}^{4J}\int_{4J}^{4J}$$

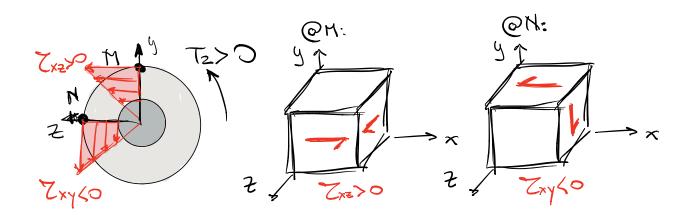
$$\frac{1}{2J}\int_{4J}^{4J}\int_{4J}^{4J}$$

$$\frac{1}{2J}\int_{4J}^{4J}\int_{4J}^{4J}$$

$$\frac{1}{2J}\int_{4J}^{4J}\int_{4J}^{4J}$$

$$\frac{1}{2J}\int_{4J}^{4J}\int_{4J}^{4J}$$

$$\frac{1}{2J}\int_{4J}^{4J}\int_{4J}$$



Name _ (Print)

(First)

(Last)

PROBLEM #4 (25 Points. Partial credits may not be granted):

PARTA – 3 points

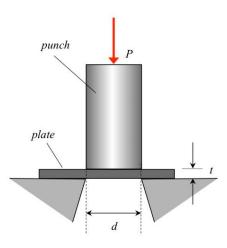
A hydraulic punch of diameter d is used to punch circular holes in a plate of thickness t. Upon applying a punch force of P, what is the shear resistance τ of the plate?

Justify your answer.

(a)
$$\tau = \frac{P}{\frac{\pi}{4}d^2}$$

(b) $\tau = \frac{P}{\pi dt}$
(c) $\tau = \frac{P/2}{\pi dt}$
(d) $\tau = \frac{P/2}{\frac{\pi}{4}d^2}$

(e) None of the above



Name _____(Print)

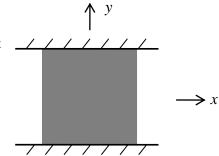
(First)

(Last)

PROBLEM #4 (cont.):

PART B – 3 points

A block is fully constrained in the y direction and is free to expand in the x and z (out of paper) directions. The block is free of stress at the initial temperature T. When the temperature is increased by ΔT , which of the following statements about stresses and strains is correct? The coefficient of thermal expansion of the block is α . Young's modulus and Poisson's ratio are E and v, respectively. Justify your answer.



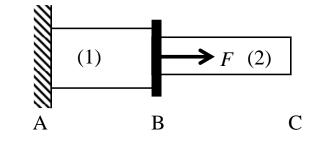
- (a) $\sigma_x = -\alpha E \Delta T$, $\varepsilon_x = 0$, $\sigma_y = 0$, $\varepsilon_y = \alpha \Delta T$ (b) $\sigma_x = 0$, $\varepsilon_x = \alpha \Delta T$, $\sigma_y = -\alpha E \Delta T$, $\varepsilon_y = -\upsilon \varepsilon_x$ (c) $\sigma_x = 0$, $\varepsilon_x = (1 + \upsilon)\alpha\Delta T$, $\sigma_y = -\alpha E\Delta T$, $\varepsilon_y = 0$ (d) $\sigma_x = -\alpha E \Delta T$, $\varepsilon_x = 0$, $\sigma_y = 0$, $\varepsilon_y = -\upsilon \varepsilon_x$
 - (e) None of the above

Name		
(Print)	(Last)	(First)

PROBLEM #4 (cont.):

PART C - 7 points

A stepped shaft is composed of two members (1) and (2). The two members are connected by a rigid connector at B on which an external force F is applied. The shaft is fixed to the wall at A and has a free end at C. Circle TRUE or FALSE for the following statements (No need to justify your answers):



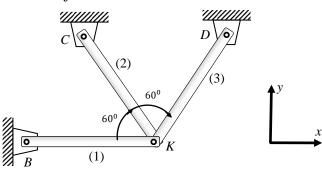
- (a) **TRUE** or **FALSE** The two members have the same internal force.
- (b) **TRUE** or **FALSE**: The member (2) is free of stress.
- (c) **TRUE** or **FALSE**: The internal forces in the two members are of equal magnitude but different signs.
- (d) **TRUE** or **FALSE** The shaft is a statically indeterminate structure.
- (e) **TRUE** or **FALSE** The two members have the same elongation.
- (f) **TRUE** or **FALSE** The sum of elongations of the two members is 0.
- (g) **TRUE** or **FALSE**: Elongation of member (1) is equal to the elongation of the shaft.

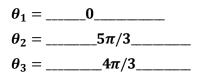
ME 323 Examination # 1	
------------------------	--

Name		
(Print)	(Last)	(First)

PARTD - 3 points

The geometry of deformation in planar truss is given by $e = ucos\theta + vsin\theta$, where *e* represents the elongation of a truss member, *u* and *v* are the displacement of the joint K in the *x* and *y* directions, respectively. Determine the θ value, in radian, for the members (1), (2), and (3) in the following truss for an arbitrary force applied at the joint K:

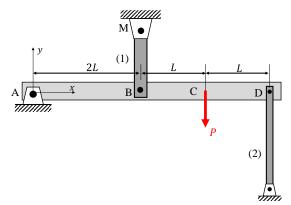




Name		
(Print)	(Last)	(First)

PARTE - 3 points

A rigid bar ABCD is supported by a pin at A, and two rods (1) and (2) as follows. A force *P* is applied at C. By equilibrium analysis, this structure is found to be statically indeterminate. Which of the following statements represents the correct compatibility condition between the elongation of rod (1) e_1 and elongation of rod (2) e_2 ?



Make a sketch to justify your answer.

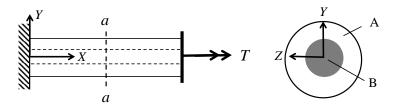
(a) $e_1 = e_2$ (b) $e_1 = -e_2$ (c) $e_1 = e_2/2$ (d) $e_1 + e_2 = 0$ (e) None of the above

Name		
(Print)	(Last)	(First)

PART F - 6 points

ME 323 Examination #1

A circular bimetallic bar consists of a tubular shell A and a core B. The bimetallic bar is subject to a torque *T*. The shear moduli of the core and shell are known to be $G_A = 2G_B$, and polar moment of inertia $I_{PA} = 8I_{PB}$. In the cross section *aa*, circle TRUE or FALSE for the following statements (No need to justify your answers):



- (a) **TRUE** or **FALSE** The two members experience the same internal torque.
- (b) **TRUE** or **FALSE**: The two members experience the same twist angle within the cross section *aa*.
- (c) **TRUE** or **FALSE**: The twist angle φ within the cross section *aa* is a linear function of the radial distance.
- (d) **TRUE** or **FALSE**: The shear strain distribution (i.e., shear strain as a function of the radial distance) within the cross section *aa* is continuous across the boundary between A and B.
- (e) **TRUE** or **FALSE**: The shear stress distribution (i.e., shear stress as a function of the radial distance) within the cross section *aa* is continuous across the boundary between A and B.
- (f) **TRUE** or **FALSE**: The shear stress distribution (i.e., shear stress as a function of the radial distance) in A and B on the cross section *aa* has the same slop.