
 

 

11. Beams: Deflections 
 
 
Objectives: 
To study the transverse deflections of beams and the application of beam deflection 
analysis to the stress analysis of indeterminate beams. 
 
 
Background: 

• Fundamental equations relating transverse loading p, shear force V and bending 
moment M for beams: 

  

 
• Moment-curvature equation for deflection of beams: 

 

  

where ρ is the radius of curvature of deflection curve for beam. 
 
  
 

 
Lecture topics: 

a) Calculation of beam deflection for statically-determinate beams using 2nd-order 
and 4th-order integration methods. 

b) Calculation of beam deflection for statically-indeterminate beams while 
simultaneously solving for the unknown reactions on the beam. 

c) Using superposition methods for determining beam deflections. 
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Lecture Notes 
Recall from the last section of notes the following three fundamental relationships 
relating the shear force V, bending moment M and the applied force/length p(x) acting on 
a thin beam: 

  (1) 

  (2) 

  (3) 

where E is the Young’s modulus of the material, I is the second area moment of the beam 
and  is the radius of curvature of the deflection curve  of the neutral axis of the 
beam. Combining equations (1)-(3) gives: 

  (4) 

 
Consider the figure below showing the deformation of a beam in bending where  is 
the transverse deflection of the neutral axis of the beam.  
 

 
 

In this figure, is the angle of rotation of the cross section of the beam and  is 
the radius of curvature of the deflection curve . From basic calculus,  and 
can be expressed in terms of the deflection curve as: 
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If we restrict our considerations deflections with small slopes ( ), the above 
reduce to: 

  (5) 

  (6) 

 
Substitution of equation (6) into equations (2), (3) and (4) gives the following: 

  (7) 

  (8) 

  (9) 

In addition, we also have equation (5) for the angle of rotation  in terms of the beam 
deflection. 
 
Note that if the properties of the beam are constant along its length (i.e., ), 
then equations (8) and (9) reduce to: 

  (8a) 

  (9a) 
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Equation (9a) can be solved for the deflection through four integrations with the 
enforcement of boundary conditions in the evaluation of the resulting constants of 
integration. A list of common boundary conditions are presented in the following table. 
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Deflections of statically-determinate beams – DEFINITE INTEGRAL APPROACH 
Recall that for statically-determinate beams, we can determine the external reactions on 
the beam using the rigid body equilibrium equations. Assume that for a given determinate 
problem we have already determined these external reactions through equilibrium 
analysis. Using these, our goal is to determine the deflection of the beam over the full 
length of the beam.  
 
To this end, we will now reconsider equations (1), (2), (5) and (7) above. We will 
integrate these equations over a given segment  of the beam. Note that the 
following results assume that the cross sectional and material properties are constant 
throughout a given segment. 
 
Equation (1): 

 
 (10) 

Equation (2): 

 
 (11) 

Equation (7): 

 
 (12) 

Equation (5): 

 
 (13) 

 
These results can be used two alternate ways for determining the deflection of a beam: 

i) Fourth-order approach – Here we start with the loading p(x) and perform the four 
integrations of (10)-(15) to obtain v(x). 

ii) Second-order approach – Here we determine bending moment distribution M(x) 
through FBDs and equilibrium analysis. With this M(x), equations (12)-(13) are 
used to produce the deflection v(x). 

Note that with this definite integral approach, the boundary conditions such as  and

 naturally appear in the solutions. 

  x1 < x < x2
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Deflections of statically-determinate beams – INDEFINITE INTEGRAL APPROACH 
Equations (10)-(13) can be combined into a single differential equation as follows. 
Taking a derivative of (13) with respect to x: 

   (13a) 

and substituting this into (12) gives: 

   (12a) 

Next, taking a derivative of (12a) with respect to x: 

    

and substituting this into (11) gives: 

   (11a) 

And, finally taking a derivative of (11a) with respect to x: 

   

and substituting this into (10) gives: 

   (10a) 

 
These results can be used two alternate ways for determining the deflection of a beam: 

i) Fourth-order approach - For a given loading p(x), equation (10a) is integrated 
four times to produce the deflection v(x). 

ii) Second-order approach – Here the bending moment distribution M(x) is 
determined through FBDs and equilibrium analysis. With this M(x), equation 
(12a) is integrated two times to produce the deflection v(x). 

With this approach, constants of integration are introduced at each step. These constants 
are evaluated by enforcing boundary conditions. For example, consider the second order 
approach: 

   

Here with the indefinite integral approach, we need to recall which boundary conditions 
are needed to be enforced to find the integration constants  and . From before, we 
saw that with the definite integral approach, the necessary boundary conditions naturally 
appeared in the process. The advantage goes to the definite integral approach! 
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Example 11.2 
 
The beam is made up of a material with an elastic modulus E and has a cross-sectional 
second area moment I, both of which are constant along the length of the beam. 
Determine the beam rotation at end A and the deflection at x = L/2. 

 
 
 
  

L

MO

A B

 x
2MO

V(x) 

M(x) 

x 

x 

θ(x) 

v(x) 

B C V o O

V L D

I J 2m Ax o

E Ma 0

No ByL 2Mo 0

By ME
E Fy D

A By 0it

Mex A

I

t
Mu MoX

2M

Approached you have Mex Mo MIX

and definiteUse equation 7

integrals



7 E I dig
E I dig

Mix

EI
dg

Mix

EI Ig as M s ds

EI x 010 It Mo MI3 as

EI O Cx EI 0105 Mo 5 1 32

ou C M
ME

Oa II C
Mox EE

Vix uco YO I l
MoS MEI d5

vex Ift ox I 1MI YE
From B C V o o



V L D

V14 On L t I f MI YI
Solve Oa 3 MEI

vis IEEE E E I

E MEE I I Ie

VCE

y

Max at L 0.52



Approached start with MA

and use i definite integrals

7 EI dg
E I dig

Mix

EIJgdx fro ME x dx

Oc f x
2

t A

IET Eta
Cx Iif of tax B

ve t.EE EYE E I A'D

o o B D

4 0 A 3L
We recover the same solution



 

Beams: Deflections Topic 11: 9 Mechanics of Materials 

Example 11.3 
 
The simply-supported beam is loaded with a concentrated couple  at B. The beam is 
made up of a material with an elastic modulus E and has a cross-sectional second area 
moment I, both of which are constant along the length of the beam. Determine the 
deflection curve for the beam shown below. 
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A.1 Geometric properties of plane areas 
 

In the following, O, A,  
I y  and  Iz  represent the centroid, the area, the second area 

moment about the y-axis, and the second area moment about the z-axis, respectively, of 
the plane area shown. 
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A.2 Beam deflection equations 
 

Formulas are provided below for selected beams and beam loadings, where EI is the flexural 
rigidity for the beam material/cross section and L is the beam length. 
 
SIMPLY-SUPPORTED BEAMS 
 

Loading on beam Deflection equation 
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CANTILEVERED BEAMS 
 

Loading on beam Deflection equation 
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