11. Beams: Deflections

Objectives:
To study the transverse deflections of beams and the application of beam deflection
analysis to the stress analysis of indeterminate beams.

Background:
e Fundamental equations relating transverse loading p, shear force V and bending
moment M for beams:
dv

P p(x)
am
i V(x)

®  Moment-curvature equation for deflection of beams:

m=El

p
where p is the radius of curvature of deflection curve for beam.

Lecture topics:

a) Calculation of beam deflection for statically-determinate beams using 2™-order
and 4™-order integration methods.

b) Calculation of beam deflection for statically-indeterminate beams while
simultaneously solving for the unknown reactions on the beam.

¢) Using superposition methods for determining beam deflections.



Lecture Notes

Recall from the last section of notes the following three fundamental relationships
relating the shear force V, bending moment M and the applied force/length p(x) acting on
a thin beam:

av

E=P(x) (1)

am

—= 2

m=2 3)
p

where E is the Young’s modulus of the material, / is the second area moment of the beam
and p is the radius of curvature of the deflection curve v(x) of the neutral axis of the
beam. Combining equations (1)-(3) gives:
d*M _dv d* ( EI
== p) = —2(—] = p(x) )
dx dx dx“\ P

Consider the figure below showing the deformation of a beam in bending where v(x) is
the transverse deflection of the neutral axis of the beam.

center of curvature of
deflection curve

deformed beam
(exaggerated scale)

deflection
curve, v(x)

neutral axis undeformed beam

In this figure, 6(x) is the angle of rotation of the cross section of the beam and p(x) is
the radius of curvature of the deflection curve v(x). From basic calculus, 6(x) and p(x)
can be expressed in terms of the deflection curve v(x)as:
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If we restrict our considerations deflections with small slopes (dv/dx <<1), the above
reduce to:

dv

—=0 5
e Q)
1 d%
—== (6)
P dx

Substitution of equation (6) into equations (2), (3) and (4) gives the following:

2
Mb" M=EI ? =FEI d—; ;  moment — curvature equation (7) ﬂ
X dx

2
VO‘\ 7= i[EI ﬂ] ;  shear — deflection equation (8) > @

d* | d*v , )

— EI — | p(x) ;  load — deflection equation 9)
dx dx

In addition, we also have equation (5) for the angle of rotation @ in terms of the beam
deflection.

v

Note that if the properties of the beam are constant along its length (i.e., EI = constant),
then equations (8) and (9) reduce to:

d’v
v =FE1<2 (8a)
a3
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Equation (9a) can be solved for the deflectionv(x)through four integrations with the

enforcement of boundary conditions in the evaluation of the resulting constants of
integration. A list of common boundary conditions are presented in the following table.

roller-in-slot

v=0
fixed support ——
0= v =0
dx
dv
constrained 0= i =0
rotation support : A3V =0
A
4 e
ree end e
f M=0 —5 i_\! =0
drt
pin joint
roller
v=0
simple support
double roller M=0
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Deflections of statically-determinate beams — DEFINITE INTEGRAL APPROACH
Recall that for statically-determinate beams, we can determine the external reactions on
the beam using the rigid body equilibrium equations. Assume that for a given determinate
problem we have already determined these external reactions through equilibrium
analysis. Using these, our goal is to determine the deflection of the beam over the full
length of the beam.

To this end, we will now reconsider equations (1), (2), (5) and (7) above. We will
integrate these equations over a given segment x; <x <x, of the beam. Note that the

following results assume that the cross sectional and material properties are constant
throughout a given segment.

Equation (1):

‘fl—V =p(x) = VE)=V()+ [ pls)ds (10)
X

|

Equation (2):

v
am T
Yoyw = M(x)|: M(x)+ x{@ds (1)

Equation (7):
de 1 7
El—-= M) = 9(x):9(x1)+5j@ds (12)

Equation (5):

% =0(x) = v(x)=v(x)+ Tds (13)

1

These results can be used two alternate ways for determining the deflection of a beam:

i)  Fourth-order approach — Here we start with the loading p(x) and perform the four
integrations of (10)-(15) to obtain v(x).

ii)  Second-order approach — Here we determine bending moment distribution M(x)
through FBDs and equilibrium analysis. With this M(x), equations (12)-(13) are
used to produce the deflection v(x).

Note that with this definite integral approach, the boundary conditions such as 6(x,;) and

v(x,) naturally appear in the solutions.
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Deflections of statically-determinate beams — INDEFINITE INTEGRAL APPROACH
Equations (10)-(13) can be combined into a single differential equation as follows.
Taking a derivative of (13) with respect to x:
do_
dx dxz
and substituting this into (12) gives:
42
M(x)= EI1*— (12a)
dx
Next, taking a derivative of (12a) with respect to x:

a _d [ g d
dx  dx dx?
and substituting this into (11) gives:
2
V—i[Elﬂ] (11a)

(13a)

B dx dx2
And, finally taking a derivative of (11a) with respect to x:

2 2
av _d” | dv
dx  gx? dx?

and substituting this into (10) gives:

2 2
d_[m%]: (%) (10a)

dx> x

These results can be used two alternate ways for determining the deflection of a beam:

i)  Fourth-order approach - For a given loading p(x), equation (10a) is integrated
four times to produce the deflection v(x).

ii)  Second-order approach — Here the bending moment distribution M(x) is
determined through FBDs and equilibrium analysis. With this M(x), equation
(12a) is integrated two times to produce the deflection v(x).
With this approach, constants of integration are introduced at each step. These constants
are evaluated by enforcing boundary conditions. For example, consider the second order
approach:
ﬂzcl+jM(x)dx
dx 1

v(x)=c, +clx+J(j A/[E(]X) dxjdx

Here with the indefinite integral approach, we need to recall which boundary conditions
are needed to be enforced to find the integration constants ¢, and c,. From before, we

saw that with the definite integral approach, the necessary boundary conditions naturally
appeared in the process. The advantage goes to the definite integral approach!
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Example 11.1 Determine the deflection curve v(x) and the beam rotation angle at end B. l l l l l l l l l l l EM0
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Example 11.2

The beam is made up of a material with an elastic modulus E and has a cross-sectional
second area moment /, both of which are constant along the length of the beam.
Determine the beam rotation at end A and the deflection at x = L/2.
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Example 11.3

The simply-supported beam is loaded with a concentrated couple M|, at B. The beam is

made up of a material with an elastic modulus £ and has a cross-sectional second area
moment /, both of which are constant along the length of the beam. Determine the
deflection curve for the beam shown below.
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A.1 Geometric properties of plane areas

In the following, O, A4, [ y and /_ represent the centroid, the area, the second area

moment about the y-axis, and the second area moment about the z-axis, respectively, of

the plane area shown.
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Geometric properties of beam cross sections
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A.2 Beam deflection equations

Formulas are provided below for selected beams and beam loadings, where ET is the flexural
rigidity for the beam material/cross section and L is the beam length.

SIMPLY-SUPPORTED BEAMS

Loading on beam Deflection equation
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CANTILEVERED BEAMS

Loading on beam

Deflection equation
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