Rubber is often used to reduce the vibration transmission between parts. A rectangular rubber vibration isolator fits into a slot that is the same width as the rubber block in the x-direction. It is bolted between two pieces of steel so that the steel uniformly applies a compressive stress of 1 MPa on the rubber block in the $y$-direction. There are no constraints in the z-direction. The Poisson's ratio of rubber is 0.5 and the Young's modulus is 12.5 MPa .
(a) What is the stress in the $x$-direction? ( 4 points)
(b) The rubber starts with a thickness of 10 mm in the y direction. What is the thickness after applying the 1 MPa stress? (3 points)
(c) In the compressed state, the block has a length of 127.2 mm in the z direction. What is the original length in the $z$-direction? (3 points)

You can assume that the deformation of the steel is negligible compared to the deformation of the rubber.


## c) Stress analysis of statically indeterminate structures with externally applied loads

In some structures, the internal force resultants cannot be calculated from the static equilibrium of sections. One has to consider material properties and use compatibility relations for this


How much load does each tire carry on the automobile above? How much weight does each leg of the millipede support?

Recall that for a statically determinate structure:
\# of unknown forces = \# of equations of static equilibrium
For a statically indeterminate problem:
\# of unknown forces> \# of equations of static equilibrium
To identify determinate or indeterminate problems: redundant supports (if removed, structure remains equilibrium).
$\begin{aligned} & \text { - unknown } r \text { - equations }= \text { dogie } \\ & \text { indoter. }\end{aligned}$

## General approach:

## Motivating Example

An axial load P acts at point C on a rod, with $a>L / 2$. Determine the reactions at the fixed ends B and D. The rod has a cross-sectional area of A with a Young's modulus of E. Answer the following questions:

Q1: Why is this problem indeterminate if considering the rod as a rigid member?
Q2: How does a consideration of strain (deformation) allow you to solve for the reactions?

Q3: Which end (B or D) carries the largest reaction load? Defend your answer with a physical argument.


## Example 6.7

A three-segment rod that is initially stress-free is attached to rigid supports at ends A and D and is subjected to equal and opposite external loads P at nodes B and C as shown in the figure below. The rod is homogeneous and linearly elastic, having a Young's modulus of $E$. For this analysis, use the following: $A_{1}=A_{3}=A, A_{2}=2 A, \underline{L_{1}=2 L}$ and $L_{2}=L_{3}=L$.
a) Determine the axial stresses in the three elements: $\sigma_{1}, \sigma_{2}$ and $\sigma_{3}$
b) Determine the horizontal displacements $u_{B}$ and $u_{C}$ at nodes B and C , respectively.


3.) $e_{1}+e_{2}+e_{3}=0 \leftarrow$
4.)

$$
\begin{gathered}
\frac{F_{1} \text { VL }}{E A}+\frac{F_{2} L}{2 E A}+\frac{F_{3} L}{E A}=0 \\
2\left(P+F_{2}\right)+\frac{F_{2}}{2}+\left(P+F_{2}\right)=0 \\
\frac{7}{2} F_{2}=-3 P \\
F_{2}=-\frac{6}{7} P \\
F_{1}=P-\frac{6}{7} P=\frac{1}{7} P \quad F_{3}=P-\frac{6}{7} P=\frac{1}{7} P
\end{gathered}
$$

a) $\sigma_{i}=\frac{F_{1}}{A}$
b) $u_{B}=\frac{F, \partial L}{E A}=\frac{\partial P L}{7 E A}$.

## Example 6.3

A magnesium-alloy rod ( $\left.E_{1}=8 \times 10^{3} \mathrm{ksi}\right)$, having a diameter of $d_{1}=1 \mathrm{in}$, is encased in a brass tube ( $\left.E_{2}=16 \times 10^{3} \mathrm{ksi}\right)$, having an outer diameter of $d_{2}=2 \mathrm{in}$. The rod and tube both have a length of $L=30 \mathrm{in}$. An axial load $P=20 \mathrm{kips}$ is applied to the free end, as shown below.
a) Determine the normal stresses $a_{1}$ and $a_{2}$ in the two materials.
b) Determine the elongation of the bimetallic rod.


$$
\text { 1. } \Sigma F_{x}=P-F_{1}-F_{2}=0 \begin{aligned}
& \frac{\partial \text { unknowns }}{} \\
& \frac{I_{\text {eq. }} .}{1 .}
\end{aligned}
$$

## 2.) $e_{1}=\frac{f_{1} L_{1}}{E_{1} A_{1}}$ <br> $e_{3}=\frac{F_{2} h_{2}}{E_{2} A_{2}}$

3.) Compatibility.

$$
\begin{aligned}
& e_{1}=e_{2} \\
& \quad \frac{F_{1} L_{1}}{E_{1} A_{1}}=\frac{\left(P-F_{1}\right) L_{2}}{E_{2} A_{2}} \\
& F_{1}\left(\frac{1}{E_{1} A_{1}}+\frac{1}{E_{2} A_{2}}\right)=\frac{P}{E_{2} A_{2}} \\
& \quad F_{1}\left(E_{2} A_{2}+E_{1} A_{1}\right)=P E_{1} A_{1} \\
& \sigma_{1}=\frac{F_{1}}{A_{1}}=\left[\frac{E_{1}}{E_{1} A_{1}+E_{2} A_{2}}\right] P=3.64 \mathrm{ks:} \\
& F_{2}=7.28 \mathrm{ksi}
\end{aligned}
$$

b) $e=\frac{P L}{E_{1} A_{1}+E_{2} A_{2}} \quad e_{1} \cdot \frac{F_{1} L_{1}}{E_{1} A_{1}}=\left(\frac{P E_{1} A_{1}}{E_{1} A_{1}+E_{2} A_{2}}\right) \frac{L_{1}}{E_{2} K_{1}}$

$$
\begin{aligned}
& \sigma_{U, \text { concrete }}=0.33 \mathrm{ksi} \\
& \sigma_{U, \text { steel }}=60 \mathrm{ksi}
\end{aligned}
$$



Figure 5. Cross-sections of the test specimens


Strain


A. E. Naaman. Proceedings of the 2nd International RILEM Conference, pp. 17-26. 2011

https://www.sglcarbon.com/en/marke ts-solutions/material/sigrapreg-pre-impregnated-materials/

https://www.wired.com/2010/03/boeing-787-passes-incredible-wing-flex-test/

## Carbon fiber market will grow from $\$ 2.33 B$ in 2021 to $\$ 4.01 \mathrm{~B}$ in 2028

Europe Carbon Fiber Market Size, 2017-2028 (USD Billion)

www.fortunebusinessinsights.com

## Example 6.8

Load $P$ is applied to rigid beam AD. Members (1) and (2) are made up of a material having a Young's modulus of $E$, and each have a cross-sectional area of $A$.
a) Determine the axial stresses in support rods (1) and (2) after the load $P$ is applied.
b) Determine the resulting rotation angle $\theta$ in beam AD . Assume $\theta$ to be small.

1.) $\left.(E M)_{D}=-P_{2} b+P(a+b)-F_{1}(b+2 a)=0\right] \frac{\begin{array}{l}2 \text { unknowns } \\ 1 \text { eq }\end{array}}{\frac{1}{1}}$


$$
F_{2}=\frac{(a+b)}{b} p-F_{1} \frac{(b+2 a)}{b}(1)
$$

2.) $e^{2}=\frac{F_{1} L_{1}}{E_{1} A_{1}}$

3.)

$$
\begin{array}{ll}
e_{2}=\left(\frac{b}{b+2 a}\right) e_{1} & \frac{F_{2} L_{2}}{E_{2} A_{2}}=\left(\frac{b}{b+2 e_{0}}\right) \frac{F_{1} L_{1}}{E A_{1}}
\end{array}
$$

(2)

$$
\begin{aligned}
& 2 F_{2}=F_{1}\left(\frac{b}{b+2 a}\right) \\
& F_{1}(b+2 a)+\frac{F_{1}}{2}\left(\frac{b^{2}}{b+2 a}\right)=P(a+b) \\
& F_{1}=\frac{P(a+b)}{\left(b+2 a+\frac{1}{2}\left(\frac{b^{2}}{b+2 a}\right)\right)}
\end{aligned}
$$



$$
e_{1}+e_{2}+e_{3}=0
$$



$$
e_{1}=e_{2}
$$



$$
\tan \theta=\frac{e_{1}}{a}=\frac{e_{2}}{b}
$$

(EM) Ieqn 3 unknouns

