Lecture 10 Review

How does the shear stress on a cross-section depend on the

radius?
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For a solid shaft, how does the polar area moment (1) depend on
the outer radius?

Y Itd 't -

uget TS

- RA2 )

. RA3 = W%/’%A'

V\’\zjag—_pj

Stress analysis of members in torsion



T TL T
I I X

Summary: torsion stresses in shafts
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Consider an axial torque T acting on a shaft with a circular cross section.

* STRAIN: The shear strain, y, varies linearly with radius, p, through the cross-
section of the shaft, regardless of the material makeup of the cross-section.

* STRESS: Across annular regions on the cross-section where the material
makeup is a constant, the shear stress, 1, varies linearly with radius, p,
through the cross-section of the shaft: t=Gy=7p /1, where 1, is the polar
area moment of the cross section.

* STRAIN/STRESS DISTRIBUTIONS:
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Example 8.4

A torque of 400 N-m is applied to gear A of a two-shaft system and is transmitted
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diameter of d =32 mm . The shafts are supported by
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modulus of G, and
frictionless bearings.

a) Determine the maximum shear stress in each shatft.

b) Determine the angular rotation of gear A relative to its unloaded position.
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Step #1 - equilibrium
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FBDof1: X T,=T,~T,=0 = T,=T, (0

FBD Qfge’(ll‘ B ZT\=711 _FBFB( =O = FB( =7]/r[; (2)
FBD of gear C: D T, =—r1pFpe =T =0 =  Fye==T/r (3)
Equating (2) and (3):  Fy. =T /rp==T,/1r. = T,==r.T, /1, (4)

Step #2 — Torque-twist equations
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Step #3 — Compatibility equations
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Step #4 — Solve
a) Stresses:
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b) Rotation at A:
Combining torque-twist equations (5)-(6) with compatibility equation (9):
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c) Statically indeterminate shafts with externally applied torques
As we have seen above, the ability to determine the maximum shear stress in a shaft
depends on our ability to determine the resultant torque T at a given cross section. Like
axially-loaded members, many torsional problems are statically indeterminate. Recall that
statically-indeterminate systems are ones for which we cannot determine internal
reactions (torques) through rigid body analysis.

Motivating Example
A torque load 7 acts at point C on a circular shaft. Determine the reaction torques at the

fixed ends B and D. The shaft has a cross-sectional area of 4 with a shear modulus of G.

Answer the following questions:

Q1: Why is this problem indeterminate if considering the shaft as a rigid member?
QQ2: How does a consideration of strain (deformation) allow you to solve for the
reactions?
Q3: Which end (B or D) carries the largest reaction torque it a > L /27 Detend your
answer with a physical argument.
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Example 8.5

A stepped shaft AC (made of material with shear modulus G) is subjected to an external
torque of 7 at B and is fixed to rigid supports at ends A and C, as shown in the figure

below.

a) Determine the torques 7; and T, carried by segments (1) and (2), respectively.

b) Determine the maximum shear stress in each segment. p
¢) Determine the angle of rotation ¢, at joint B. J QB"%""'Ab‘
3 L, < & A@

l _ N < g+ O.J

< N
: l
&3 ‘V:*A&\ O . bb‘*k&l.

ée-f A—» e Ff'}:/—_[éi

- AR Ta

VL wakwoning

1) EM)p: T, -1=0 .g teqlv\

D) Mp=Th AsTda 3 EAY RN
G"l? G;&?"’ I\
1(’:' 3)&3

3-> &ow,!)o\\\b i\tiy
hb, '\'N%”O

Stress analysis of members in torsion Topic §: 14 Mechanics of Materials







4 1 ‘F_Tr\‘ darawn

Example 8.7

A bimetallic torsion bar consists of a shell (1) and a core (2). The shear moduli for the
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1s loaded with an axial torque.

a) Determine the maximum shear stress in the core (2) and the maximum shear
stress in the shell (1).

b) Make a sketch of the shear stress distribution across the bar cross section.

¢) Determine the total twist angle of the composite bar.
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Example 8.4

bearing support
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