Chapters 9-11: Beams

Applications

Beams are structural members that are Compression and Tension
designed to support transverse loads, that is, it 36 BgE g Biean

loads that are perpendicular to the longitudinal I I
axis of the beam. A beam resists the applied Compression »

loads by a combination internal transverse —
- - Tension
shear force and bending moment.
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10. Beams: Flexural and shear stresses

Objectives:
To develop relationships for the normal stresses and shear stresses corresponding to the
internal bending moment and shear force resultants in beams.

Background:
® The bending moment M and shear force J” at a cut through the cross section of a
beam are couple and force resultants of the normal and shear stresses,
respectively, at the cross section.

e Shear force/bending moment equation:

dx

%

e Axial stress/strain relation:

o,=Le,

Lecture topics:
a) Strains for pure bending in beams
b) Flexural stresses due to bending in beams
¢) Stresses due general transverse force and bending-couple loading of beams



Lecture Notes

Suppose we consider an example of a beam acted upon by two force/couple pairs
resulting from equal magnitude forces P at locations A, B, C and D.
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As seen in the above shear-force/bending-moment diagrams:
* The shear force in the beam between B and C is zero.

* The bending moment between B and C is a constant value of M = Pd .

Therefore, a state of “pure bending” (zero shear force) exists between B and C in the
beam. So long as we keep our focus on the section BC of the beam, we can represent the
above loading as a beam with equal and opposite couples M = Pd applied at its ends, as

shown below.
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a) Strains for pure bending in beams

In order to view the beam deformations, it is convenient to imagine the beam to be made
up of longitudinal fibers parallel to the longitudinal axis of the beam. Under the action of
equal and opposite positive bending couples at its ends, the top fibers of the beam will
shorten and the bottom fibers of the beam will stretch, as indicated below. The fiber that
divides the region of compression from the region of stretch is said to lic on the “neutral
surface” of the beam.

Positive bending moment
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Conversely, under the action of equal and opposite negative bending couples at its ends,
the top fibers of the beam stretch and the bottom fibers will shorten.

Negative bending moment
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Euler- Bernoulli definitions and kinematic assumptions for thin beams
Consider the following assumptions related to the geometry and loading of a beam:

® The beam has a plane of longitudinal plane of symmetry (xy-plane as shown in
following figure) called the “plane of bending”. Loading and supports for the
beam are assumed to be symmetrical about the plane of bending.

e The beam has a longitudinal plane (xz-plane as shown in following figure)
perpendicular to the plane of bending on which there is zero longitudinal strain
called the “neutral surface”. The intersection of the neutral surface with the plane
of the cross section is called the “neutral axis” for the cross section. In the
following discussions, it will be assumed that the z-axis will be aligned with the
neutral axis of the beam in its undeformed state. The intersection of the plane of
bending and neutral surface is known as the beam axis. The deformation of the
mitially-straight beam axis 1s known as the “deflection curve” of the beam.
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® Planar cross sections that are perpendicular to the beam axis before the beam
deforms remain perpendicular to the beam axis after deformation. In the following
figure are shown two points A and B on a cut made perpendicular to the neutral
axis of the undeformed beam. As a result of the application of the bending

- . * 3k
moment M, cut A-B rotates in the counter-clockwise sense to produce 4 — 8 ;

~ . . % % . .
however, as a result of this assumption, 4 — B remains perpendicular to the
deflection curve. Also, the radius of curvature of the deflection curve 1s denoted

as p in the figure.

center of curvature of
deflection curve

deformed beam M

exaggerated scale) k‘\

deflection
curve, v(x)

neutral surface undeformed beam




b) Flexural stresses due to bending in beams
Consequences of the Euler-Bernoulli assumptions:
* Asaresult of the above Euler-Bernoulli assumptions, it can be shown that the axial

strain €aCross a perpenc licular cut in the beam has the following distribution in y

e =% «X’Aw\wl\ce Q«m '\?v‘\\h\ ox\‘:m
P

where v is measured from the neutral surface of the beam and p 1s the radius of
curvature of the deflection curve for the loaded beam.

» For a linearly-elastic material for the beam, the normal stress distribution in y 1s

therefore:
Ey
o =Lke =—— 2)
- - p*
Y ' y \
€ i o, .= Le, M
neutral surface neutral surface
\ -
£ o
— ¥ —. X
strain distribution across cut stress distribution across cut

* The resultant axial force on tbc face of the cut 1s found by:

O =hy= J;cr'\_dA:_%:[ydA __Ez4

. P
where A is the area of the cross section at the cut and V is y-position of the
centroid of the cut. Since the beam 1s known to be in purg-bcnding, the resultant
axial force on the face of the cut must be zero Therefore, using the above, we see

that:

y=0 (3)
or, in words, the neutral axis must past through the centroid of the cross section of
the cut.

-/\o"'/.,
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RESULT: When studying the stress distribution in beams, determine first the
location of the centroid of the cross section — the neutral axis passes through this
point.

» The resultant moment about the neutral axis must be equal to the couple M.

Therefore,
E El
M=-[o ydi="[yd1="" (4)
- ' p P
A W 1
where:
second area moment of cross Aseclionl (5)
A
« Com ining equations (2) and (4) gives the desired relationship between the applied
couple M and the distribution of normal stress across a cross section of the beam:
M v
o, .=—== (6)
C—mm
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Summary: pure bending at a beam cross section
At a cut through a section of a beam experiencing pure bending (zero shear force, ' =0)
and abiding by the Euler-Bernoulli assumptions, we can make the following observations
(see following figure):
a) Even though loads are applied transverse to the beam, axial strains and stresses are
produced. Only normal stresses o exist at the cut.

b) The extensional strain & =-y/p is inversely proportional to the radius of
curvature of the beam deflection curve at a cross section, x.

¢) The signs ofﬁ and y govern the sign of € . If p is positive, the center of curvature
of the beam deflection lies above the beam, that is, on the +y side of the beam and
the deformed beam is concave upward. Because of the negative sign in the equation
of €, the sections above the neutral surface are in compression, while the sections

below the neutral surface are in tension.
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(a) Positive curvature. (b) Negative curvature.

d) The axial strain is not uniform across the section but varies according the height of
the point from the neutral axis. Flexural strain reaches maximum at the top and
bottom of the beam and is zero at the neutral axis where there is no axial strain.

¢) The neutral axis of the cross section (axis of zero strain) passes through the centroid
of the cross section.
f) The normal stresses vary linearly in the y-direction: ¢ (y)=—-My /I, where I 1s

the second arca moment of the cross section at the cut about the neutral axis. The
negative sign in this equation results from sign conventions established earlier. For
example, a positive bending moment results in negative (compressive) stress above
the neutral axis and positive (tensile) stress below the neutral axis.

g) The normal stresses are constant in the z-direction (into the depth ot the beam).
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h) The normal stress is zero at the neutral axis.

1) The maximum (magnitude) normal stress exists at the most outer surface of the
beam (as measured from the neutral axis). In particular,

Ml
‘O’ 4 — max
Xmax Ji
where )" =m(1x(lzflv,hg)_
max

1) The bending moment M can be written in terms of the radius of curvature p of the
beam deflection as: M = EI/p. Since M is a constant over the section of pure

bending, the radius of curvature is also a constant. Hence, we conclude that a
section of pure bending of a beam takes on the shape of a circle (circle = curve of
constant radius of curvature).

pure bending at cut
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Example 10.1

A simply-supported beam 1s loaded as shown. The cross section at location C of the beam
is as shown below right, where C is somewhere between the two applied loads P. Point O
on the cross section is on the neutral axis of the beam.
a) Determine the second area of moment of the beam cross section. Leave your
answer in terms of b and h.
b) Determine the distribution of normal stress on the cross section of the beam as a
function of y.

¢) Determine the maximum (magnitude) of the normal stress on the cross section.
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Example 10.2

A beam is loaded in pure bending, as shown. The cross section at location C of the beam
is as shown below right, where C is somewhere along the length of the beam. Point O on
the cross section is on the neutral axis of the beam.
a) Determine the second area of moment of the beam cross section. Leave your
answer In terms of R.
b) Determine the distribution of normal stress on the cross section of the beam as a
function of y.

¢) Determine the maximum (magnitude) of the normal stress on the cross section.
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Second area moment of a cross section
Consider the beam cross section shown below left that is symmetrical about the y-axis

Uut ‘V‘Vl‘lt!‘l }“{) S\Irr}r}‘}ctr\! assul’nl’\f;l\ﬂk‘ ')I’\I\I‘f fl‘l/\ V_aV ;&' Tvnors f"\{\ Nriaorm l\""f O WV _\J AV |'£ (\
IJLI\JIIO auUuUuL LlIv ATAaAly, yYWilivivw Liv Ul lslll VUl ouiv A .)’ anto, v,
1s placed at the centroid of the cross section.
plane of symmetry plane of symmetry
centroid centroid
dop
e\ g N
X
In the preceding derivation of the stress distribution across a cross section:
My
o.= —[—“ (6)
0

we saw that this relationship depends on the “second area moment” 7, for the cross

section:

[IO = J.)*z dA

A
where y is measured from the centroid of the cross section. Note that this parameter
depends solely on the shape of the cross section and does not depend on either the
material properties of the beam or the strain in the beam.

Tabulated expressions for the centroidal second area moments for a number of common
beam cross sections are provided on the following pages.

For reasons that we will discuss later on, we often times need to know the second arca
moment about points on the plane of symmetry but not at the centroid of the cross
section. Consider point B shown in the figure above right that is located at a distance

d,, from the centroid O on the plane of symmetry. Suppose we place a set of X-Y

coordinate axes with its origin at A such thatX=x and Y =y-d Therefore, the

0B
second area moment about point B is found from:
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IB=0Ny2dA= f(y-doB/ dA 'lo ‘S((X~6‘MYC\A‘
A A A
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A

=fy2dA- 2donydA+d 3 fdA
A

A A

= 2
=1, ~2d, A+ Ad,

where A is the area of the cross section and Y is the y-position of the centroid of the

area. Since the origin O for the x-y axes is located at the centroid of the cross section, we
have )/=0. Therefore,

a
IB=1I,+ Ad*B I 104 l\%& (7)

Equation (7) is the "parallel axis theorem" for second areas of moments. In words, in
order to determine the second area moment about an arbitrary point B on the plane of
symmetry, simply add AdbB to the centroidal second area moment /,, where d,B is the
distance between O and B.

In general, one needs to perform an integration over the cross section of the beam in
order to evaluate this integral representation for /,. We have seen this process in the

earlier examples. However, for certain cross sections, we can use results from simple
shapes to construct the overall second area moment for the cross section. To this end, we
will need to use the above parallel axis theorem. This process is demonstrated in the
following examples.

(N

1= 1\"'19.
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Example 10.5

The cantilevered beam shown below is loaded in pure bending. The beam has a cross
section at location C on the beam as shown below right. The origin O is located on the
neutral axis of the beam.

a) Determine the second area moment 7, corresponding to the neutral axis of the

beam.
—

b) Determine the distribution of normal stress on the cross section of the beam as a
function of y.

¢) Determine the maximum (magnitude) normal stress occurring on the cross-
sectional face at C.
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(1), =1+ Ades = Q:M k(3

(1 =L,
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Relative Parameter

How can we increase the
strength of the beam?
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