Which of the beam cross-sections have the same magnitude
for the max tensile flexural stress and the max compressive
flexural stress?
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Summary: flexural stresses in pure bending in beams

* Pure bending: locations on a beam for which the shear force is zero. Examples:

* Flexural stresses in pure bending:
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* Where on the cross-section is the flexural stress the greatest?
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Example 10.4
The beam shown below is loaded in pure bending. The beam has a cross section at

location C on the beam as shown below right. The origin O is located on the neutral axis
of the beam.

a) Determine the location of the centroid for the cross of this beam; i.e., what is the
distance d?

b) Determine the second area moment /,_ corresponding to the neutral axis of the
beam.

¢) Determine the distribution of normal stress on the cross section of the beam as a
function of'y.

d) Determine the maximum (magnitude) normal stress occurring on the cross-
sectional face at C.

Use the following dimensions: M =2000 N -m, t =20 mm , b= 80 mm, a =40 mm and

h =80 mm.
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c) Stresses due general transverse force and bending-couple loading of beams
Earlier in the chapter, we considered the normal stress distribution within the cross
section of a beam experiencing pure bending (i.e., in the absence of a shear force
resultant on the cross-sectional cut). Here we will now consider the more general case of
having both shear force and bending moment couples on the cross-sectional cut, as
demonstrated by the figure below.
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We have seen that the normal stresses due to the bending moment M are linearly
distributed over the cross section, with maximum magnitudes of normal stress occuring
on the outer fibers of the beam and with zero normal stress at the neutral axis (the neutral
axis passing through the centroid of the cross section).

With the shear force ' now added to the cross-sectional cut, we now need to determine
the shear stress distribution on the cross section. With our earlier assumptions of
symmetry of the beam cross section about the xy-plane, we know that the distribution of
the shear force will be constant through the depth of the beam (z-direction). For the case
of direct shear (zero bending moment), the shear stress was also constant in the y-
direction, making shear force constant throughout the cross section a constant. However,
the presence of the bending moment induces a redistribution of shear stresses in the y-
direction.
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Consider the cross section shown above. We desire to know the sltar stress T acting on f\qv\e %
a stress element at a distance of y from the neutral surface. This shear stress along the { ‘A
axis of symmetry (the y-axis) can be expressed as: cen

IZQ: =V e 8) a\ x’“

where:
J” = shear force at cross section

e R

* .
4 = cross-sectional area above the element % +
—R
R \\.

t = depth dimension of the beam at the location of the stress element of interest

1%

" & o »\
% . ~

¥ = centroid of the area above the element

[ = centroidal second area moment for the entire cross section

The derivation of equation (8) will be presented on the following pages.
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Derivation of the shear stress distribution equation

Background:
a) Recall that in the derivation of the equation for the normal stress distribution for
pure bending:
My
o.= _T (6)

b)

we assumed that plane sections of the cross section remain plane, and that they
remain perpendicular to the deformed axis of the beam. For the more general
situation in which a shear force 17 acts along with the bending moment M, a
component of shear stress will exist. As we have seen earlier, the resulting shear
strains correspond to a change in angle of the stress element. This angle change is
somewhat in contradiction with the pure bending assumption of the cross section
remaining perpendicular to the deformed beam axis. For our derivation, we will
assume that the shear strain effects will be slight and that, even in the presence of
shear stress, the distribution of flexural stress on a given cross section is
unaffected by the deformation due to shear and that equation (6) is still valid for
computing the normal stresses on the cross section.

Suppose we consider a stress element on the side of a beam with a non-zero shear
force resultant on the face of the cut. Our goal here is to determine the transverse
shear stress component 7 that corresponds to the shear force resultant V. Note,

however, that since 7 T, the transverse shear stress component 7 is the

Iy =
same as the longitudinal shear stress component 7. Stated in different words,

we can determine the transverse shear stress by calculating the longitudinal shear
stress. This will be the process that we will use here in deriving equation (8).
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Derivation of shear stress equation:
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Consider the aribitrarily-loaded beam shown above. Here we isolate a section of the beam
between locations x and x+ Ax, with the resultant shear forces and bending moments
acting on this section, as shown above left. The resultant bending moments M (x) and
M (x+ Ax) produce normal stresses of o(x)and o(x+ Ax)on the left and right faces of
the beam section, respectively. Suppose we further isolate a slice of this beam section
found above a given value of y on the beam cross section. As shown in the above figure,
the resultants of the normal components of stress on the left and right faces are given by
[F(x)and [(x+ Ax), respectively. A resultant longitudinal shear force AA also acts on

the lower surface of the slice at y. From static equilibrium of the slice we have:
{Z F.= 1:'(,\')— F(x+Ax)+ A‘_I{ =0 = Al =F(x+Ax)— F(x)

The shear stress corresponding to this resultant shear force is found from the usual

definition of stress in terms of the force resultant as:

T=

) Al )
Im| — |=- Im

Av—0\ JAX

From the above we have:

{ ] F(x+Ax)— F(x)
t Ax—0 Ax

F(x)= @ [yas =4% M(x)

u

Beams: Flexural and shear stresses

Topic 10: 19

_LdF
T tdx

9)

(10)

Mechanics of Materials



* * . ~ N .
where 4 and y arc the arca and the centroid of the area of the cross section above v.
Combining equations (9) and (10) gives:

po A2 A (1)
It dx
Finall : at from equilibrium analysis that " = dM / dx . Therefore, (11) becomes:

(8)

Comments on the usage of the shear stress equation

a) Note that this derivation was based on considering a slice of the beam section
ABOVE the location y; hence, we ended up with 45 representing the arca
above y. Alternately, we could have easily kept a slice of the section BELOW
position y. In that case 4"3 in the equation would then represent that area below
y. We will get the same magnitude for the shear stress using the area below y as if
we consider the area above v.

b) There are limitations on the usage of this shear stress equation, as listed below.

e Effect of load distribution: The assumptions of plane sections remaining
plane and perpedicular to the neutral surface are valid for beams that are long
compared to their depth. This assumption limits the influence of shear
deformations in the beam and, hence, limits the error in the flexural stresses.

o Effect of cross section shape: The shear stress equation derived is particularly
accurate for beams that are thin in the depth dimension (“f’) and for which
this dimension ¢ does not vary rapidly with y. For thin-walled beams, the
shear stress equation is valid for sections of the cross section that are aligned
with the y-axis, and most accurately so near the neutral plane.

¢) Other remarks on the shear stress equation:
e The sign of 7 is the same as the sign on V. Also, recall that V is the force

resultant of the shear stress: ' = JT(H

e [ 1isthe second areca moment of the cross-section y y
(independent of the location y). — BEE

e ¢ is the net thickness of the beam at the location y. 1 JLz2d

O*chardlcss of the cross section, 7=0 at the top

and bottom fibers of the beam.

‘ . . 1=\
e Ifthe beam cross section i1s symmetric about the neutral axis, the

maximum shear stress occurs at the neutral axis.

L
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Example — shear stress distribution in a rectangular cross section
As an example, consider a rectangular cross section beam of dimensions of thickness £
and depth . From before, we know that the centroidal second
arca moment for a rectangular beam of these dimensions is

[ =1th® /12 For a stress element at v, we have:

- .L(L_ \
{3y
Combining the above gives: hi2
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From this result, we observe the following for the shear stress distribution across a cut of
a rectangular cross section beam experiences a shear force J:

T

» The stress distribution is quadratic with location y of the stress element.
» The shear stress 1s zero at the outer fibers of the beam ( y==%/4/2), as expected

since these fibers experience no horizontal loads.

¢ The shear stress is a maximum at the neutral axis (y=0). This maximum shear
stress is given by:

e
’ Tax = ﬁ

* Recall that the average shear stress across the cut is given by 7, =V / 4, which

would be the shear stress on the cut in the absence of a bending moment. From
this we see that the bending moment produces a 50% increase in the maximum
shear stress for a rectangular cross sectioned beam.
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Summary: stress distribution due to combined shear force and bending couple at cut
At a cut through a section of a beam experiencing both a shear force /' and bending
moment M , and abiding by the Euler-Bernoulli assumptions, we can make the following
observations (see following figure):

a)

b)

d)
e)

Beams: Flexural and shear stresses

Both normal stresses o, and shear stresses 7 exist at the cut.

The normal stresses vary linearly in the y-direction as in the pure bending case.
All previous observations about the normal stresses due to pure bending also
apply in the case.

The shear stresses are approximately constant in the z-direction (into the depth of
the beam) for “narrow beams”, 1 > 2h.

The shear stress is zero at the outer surfaces of the beam.

For rectangular cross-section beams, the shear stress distribution at a cut is
parabolic in the y-direction:

T 6 112 2 I
= —_— y /
AR*| 4
where A 1s the area of the cross section. The maximum shear stress,
T =3V /2A, occurs at the neutral axis (y=0).
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Shown below 1s a rectangular cross section cantilevered beam with a single transverse
applied load P. A cut is made at one location along the beam. What are the stress states at
stress elements a, b, ¢, d and e at the cut?

The cut in the beam exposes both a bending moment M and a shear force V, where:
M(x)= P(L-x)
V' =—=P = constant along length of beam

where x is the location of the beam cut. A combination of normal stress ¢ and shear
stress T 1s expected, in general, at the stress elements. Based on our earlier analysis, we
observe:

» Stress elements a and e experience only normal stress since shear stress is zero at
the outer fibers. At a the normal stress is compressive, and at e the normal stress is
tensile. The magnitudes of these normal stresses are equal and are their maximum
values on the cross section.

» Stress element ¢ experiences only shear stress since the normal stress is zero at the
neutral axis. The shear stress T at ¢ is the maximum of all stress elements on the
cut.

» Stress elements b and d experience a combination of normal and shear stress. The
normal stress at b i1s compressive, and the normal stress at d 1s tensile.

Note that the maximum shear stress at a cut is constant along the length of the beam. The
magnitude of the maximum normal stress at a cut decreases as the cut 1s moved away
from the wall.
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M(x)=P(L-x)

V' =—P = constant along length of beam
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Failure of Beams

If a material fails due to normal stresses, how will it fail?

If a material fails due to shear stresses, how will it fail?




Example 10.7

A rectangular cross-section timber beam AE has dimensions and loading shown.
Determine the normal and shear stress distributions at location C on the beam.
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Example 10.11

Use the shear stress formula for a general shape cross section developed earlier in the
chapter to determine an expression for the maximum shear stress along the symmetry
axis y of the circular cross section beam shown below.
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