16. Energy methods

Objectives:

To develop expressions for the strain energy for loaded structural elements and to use
these expressions for the determination of elastic deformations in the structural elements
due to the loadings.

Background.

Lecture topics:

a)
b)
©)
d)

Work/energy equation
For a given system, the total work done on the system is equal to the change in
total energy:

W) = AT + AU
where W is the work done on the system by non-conservative forces, AT is

the change in kinetic energy and AU is the change in potential energy.

Equilibrium
For a system in equilibrium, the work/energy equation reduces to:
w) = AU

which says that the change in potential energy is equal to the work done on the
system.

Strain energy in springs
Recall that the potential energy in a spring is given by:

U= 1A
2

where £ is the stiffness of the spring and A is the stretch/compression in the
spring. Since this potential energy results from the change in strain in the spring,
this 1s often times referred to as the “strain energy” in the spring.

Expressions for strain energy in a structural element.

Using the work-energy principle for determining deflections.

Castigliano’s second theorem for determinate structures.

Castigliano’s second theorem for indeterminate structures.
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Lecture notes
a) Strain energy expressions

Motivating example #1

Consider a spring of stiffness & acted upon by a constant magnitude force P. Assume that
the spring is uncompressed before the application of the force. Let e represent the
compression in the spring resulting from the application of the force P . Write down the
equilibrium form of the work energy equation for the system.

B k

For equilibrium, we know that P = ke for all deformations e. Therefore, the work done
by P under equilibrium conditions is:

e e
1 1
W(P) = dee = kjede = —ke? = —Pe
R— 5 5 2 2
We know that the potential (strain) energy in the spring can be written down directly as:

1 . : . )
U= Ekez. However, for practice, let’s derive this expression. To do so, recall that the
change in potential of a conservative force is equal to the negative of the work done by
the force
e
WP = —Ike de ; "-"since spring force opposes motion
0
1
=——ke?
2
Therefore,

1 : .
U=-w" = Eke2 (which agrees with what we already knew above)

From this, the work/energy equation for equilibrium is:
W(P) =U = lPe=lke2
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ke

Alternate representation:
Since we are considering equilibrium, P = ke, we could have written the strain energy in

the spring as:

2 2
U=lkez=lk(£j =£;
- 2 2 \k 2k

This representation directly shows the dependence of the strain energy on both the
applied load and the stiffness of the spring. For this expression, the work energy equation

W (#) = U takes on the form of:

1 P
—Pe=
2 2k

from which we can recover the expected expression for the static elongation of the

spring:
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Motivating example #2

Consider a straight rod (with constant cross-sectional area A) under the action of an
extensive axial load P and fixed to ground on its left end. Determine an expression for the

strain energy in the rod as a result of the axial load P.

V| L
P
before deformation — X
e
P
after deformation ———p

v

-

A P

The axial load P is related to the axial stress through:

P=c,A ]
For a linearly elastic material:
du
o,=Fe . =E—
X X dx
And, the elongation in the rod is given by:
du du e
e=L— = —=—
dx dx L

Combining (1)-(3) gives:
_EA e:= !\.:
P -761 T\,

The work done by the axial load P is given by:

e e
5 5 2 L 2

Since U =W the strain energy in the rod is given by:
1
U=—Ps
2

K—-u

(1)

2)

3)

(4)

©)

(6)
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Alternate representation:
From equation (1),

PL
e=—
EA
we can write the strain energy in the rod as:
1 P’L
- 7
2 EA ™

This representation directly shows the dependence of the strain energy on both the
applied load and the material and properties of the rod. For this expression, the work

energy equation W (7) U takes on the form of:

Lp, 1P°L
2 2 EA
from which we can recover the expected expression for the static elongation of the
spring:
PL

e=—
EA
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General expressions for strain energy and work
The total strain energy for a linearly elastic body can be written as:

= [rav ' (8)
vol ,‘

where:
u = strain energy density function
i 9 Y ©)
[ﬁ — AT )+ ( €, —aAT)+¢(e; —aAT)+1x_y.yxy+z"_x:_)./x: +ry:yy::|

From this general expression above, we will derive strain energy functions for a number
of types of components, including: rods, shafts and bending beams.

Also, recall that the work due a force P acting through a distance e, can be written as:

el
= IPde 1
0

And, the work due to a couple M acting through an angle 6, can be written as:
&)
j M de

Suppose that these forces and moments act slowly (such that dynamic effects are not
significant) and with /inear relationships between P and e, and between M and 6, as
indicated by the plots below.

P M
w'P) é wM)

P -

N\ 5

In this case, the work due to P and and the work due to M (the areas under the respective
Pvs.eand M vs. @ curves) can be written as:

W(P) = %P(el )el
=2 (a)e,

Note that the second expression above applies to both a torque 7 acting through a twist
angle of ¢ and to a bending moment M acting through an angle of beam rotation 6.
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Component: rod carrying axial load P

Here we consider a rod of length L, cross-sectional area 4 and Young’s modulus £
carrying an axial load of P. For axially-loaded rods, we have the following stress and
strain functions:

o, =E(x )du(x) OR P(x)&=
dx A(x)
_du(x) Ok P(x)
T odx o AMX)E(x)
and, in addition, dV = A(x)dx .

Substituting these into the general strain energy expression (8) gives EITHER:

U=— jo € Adx——jEA(f;) dx (10a)

OR
jo e, Adx —j—dx XX (10b)
where, in general, E,A P and u may all be functions of x.

For the special case where E, A, P and u are all constants in x, expression (10b)
reduces to:

(10c)
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Component: circular shaft carrying torque T
Here we consider a circular cross section shaft of length L, polar area moment 7/, and

shear modulus G carrying a torque of 7. For a circular shaft carrying a torque 7' along
the x-axis, we have the following stress and strain functions:

dg(x) % T(x)p
dc  Ip()
_ de(x) 9% Tp
=P 0 T G,
where p is the radial distance from the centerline of the shaft cross section, ¢ is the
angle of twist and, in addition, dV = dAdx .

Z=G)p

Substituting these into the general strain energy expression (8) gives EITHER:

«
j | rydAdx_—j [ p*aa|c (Zf) dx ——JGIP(jfj dxl (11a)

0 area area

OR
L

g=—j | TydAdx—%J | p*aa

= dx
2 L)
0 erea 0 5 Ul S G.I£ 2 0 GIP &
where Ip = J P 2 dA . Here G, Ip, T and ¢ may all be functions of x.

area

A
T2 x—lL 2

(11b)

For the special case where G, Ip, T and ¢ are all constants in x, expression (11b)
reduces to:
1T°L

U=sar, [& e
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M. N
Component: bending beam — flexural strain energy I

Here we consider a thin beam of length L, second area moment / and Young’s modulus
modulus £. The transverse deflection of the beam is v(x), the bending moment in the
beam is M(x) and with y being the cross sectional coordinate in the direction transverse to
the beam. For a thin Euler-Bernoulli beam we have the following stress and strain
components corresponding to the normal (flexural) stress:

d 2v()c) M (x)y
I(x)

. dzv(x)_ M (x)y \

gu=—E(y

d* E(0I(x)
and, in addition, dV =dAdx. Here we will assume that the Young’s modulus does not
vary across the beam’s cross-section. Substituting these into the general strain energy

expression (8) gives EITHER:
2
24A |E dv dx = jEI dy ] (12a)
dx? dx?

——J _[ O,€ dAdx——J[ j
1LM‘z

0 area 0\ area
where I = _[ y 2dA . Here E , I, M and v may all be functions of x.

area

OR

U= 2j [o.e dAdx_—j[ [y

0 area 0 \ area

Component: bending beam — shear strain energy
For a bending beam, we also have energy that is attributed to shear stress/strain. For the
same notation as before, we can write for the shear stress and shear strain:

VRl K
R A
l — lw rectangle
VUGG IHy)
Substitutmg into the general strain energy expression (8) gives:

‘<

U=- j j TxvyxydAdx.\ circle Q
Oarea
L
1 2ew LAV
| PR ey
2 P a6 thin-walled tube

where:

fn=AQ [ @)

5 form factor" for the beam cross section Note that
P g 17O -

the form factor expression above has been calculated for some common cross-sections, as
presented to the right.
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Summary

The strain energy functions for the three types of members investigated here (axially-
loaded members, torsionally-loaded members and members with flexural and shear
stresses due to bending) are summarized below.

Member loading type

Strain energy: load-based

Strain energy:
displacement-based

ial ik 15 (auY
axia =— s _* au
29 E4 & U 2.(!.EA(de dx
. T? 1 TP
torsion

L 2
U=1jG1 LA
20 P\ dx

. 15 M? 1 d*u ?
bending - flexural U =—|—d — —
g ) 2-(|;EI x U, _([El(dxz dx
L V2
bending - shear U =l J, dx
to2Y9 GA

In this chapter, we will focus on the use of the load-based formulations of strain energy
listed above. In a later chapter when we work with the finite element formulation, we will
use the dispacement based formulation.

Energy methods
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c) Work-energy equation
Recall that the work-energy equation for a system can be written as:

W=T+U

For static equilibrium, the change in kinetic energy 7 i1s zero. Therefore, the above
reduces to:

w=U

The usage of the work-energy equation above is very limited in its usefulness in
displacement analysis. For simple systems of having an applied load acting at only a
single point, the work-energy equation can be used to determine the static deflection of
the structure at the point at which the load is applied. For more complicated loads, we
will still have only a single work-energy equation for loads at multiple points; however,
we will need multiple equations to solve for displacements. In that case, we need to
appeal to more advanced methods, such as Castigliano’s methods that follow.

d) Castigliano’s Second Theorem — applied to determinate structures
Consider a determinate linearly elastic deformable body or system acting upon by N

forces P, ; i=1,2,...,N. Among all possible equilibrium configurations of the system,

the actual configuration is the one for which: ’30 w
l.=a_U . i=12,.,N $=ag' ’G:m' b"ﬁ'
—~ OP \ 9

where A; is the displacement corresponding to and in the direction o fhe force P, and
U is the strain energy for the system. -
\ S ‘

e) Castigliano’s Second Theorem — applied to indeterminate structures
Consider an indeterminate linearly elastic deformable body or system acting upon by N

forces P, ; i=1,2,...,N . Since the system is indeterminate, there will be a number ( Ny )

of redundant forces in the strain energy function: R; ; i=1,2,...,Np. Among all possible

equilibrium co 1ons of the system, the actual configuration is the one for which:
A= a—q— ;o 1=1,2,...,.N
JoF;
U \
=—7  ; i=12,.,N
OR A R

where'Ai is the displacement corr;slponding to and in the direction of the force P, (or R;
), and U 1is the strain energy for the system.
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Comments on the usage of Castigliano’s theorem for deflection analysis

a) For determinate structures, one 1s able to solve for the external reactions directly
through equilibrium equations. As a result, it is possible to also find the internal
resultants (such as shear forces, axial forces and bending moments), and
consequently, the strain energy for the structure can be written in terms of only the
applied forces that are used for find deflections.

b) For indeterminate structures, one has too few equilibrium equations for
determining the external reactions on the structure; therefore, it 1s not possible to
find internal resultants, and, consequently, the strain energy will include many of
these unknown reactions. Suppose that the structure of interest has an

indeterminacy of order N ; that is, there are N, too few equations available for
finding reactions. Therefore, we have N, redundant forces/couples. For these

problems, one needs to first choose which reactions that will be considered
redundant, and write the equilibrium equations so that the remaining reactions are

in terms of these redundant forces/couples. The additional N, equations needed
for determining_the reactions are found from the second Castigliano equation
above:{0=9U / aRl.s ; i=12,..,N,. Once these reactions are found, then the first

set of Castigliano equations are used to find the desired deflections.

¢) Note that Castigliano’s theorem allows us to determine components of
displacements only at points where loadings are applied and only components of
displacements that are aligned with the loadings. If the structure is not acted upon
by a force at a point and/or along a line of action for which deflections are needed,
we simply need to apply a “dummy” force/couple to the structure, treating as a
regular applied load. After applying Castigliano’s theorem, then set the dummy

A force/couple to zero.
8
e U
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Example 16.1

A rod having a solid cross section of area A and made up of a material with a Young’s
modulus of E is made up of components (1) and (2). Components (1) and (2) are joined
by rigid connector C, with component (1) being attached to rigid wall at end B and with a

second connector at end D of (2). Loads F, and F, act on connectors C and D.
a) Determine the strain energy stored in the rod in terms of the applied loads and the
work done by the applied loads under static equilibrium conditions.

b) Write down the work-energy equation for the system under static equilibrium
conditions. Explain why the work-energy method cannot be used directly to
determine the static displacements of either C or D.

c) Use Castigliano’s theorem to determine the static displacements of C and D.

(€ih %50 =5F]
ERe = =0 § %0 ]
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Example 16.2

A shaft (made up of a material with a Young’s modulus of E) is composed of elements
(1) and (2), where (1) is a hollow circular tube and (2) has a solid circular cross section.
Elements (1) and (2) are joined by a rigid connector C, with (1) attached to fixed wall at

B and (2) joined to a rigid connector at D. A torque 7}, is applied to connector D.

a) Determine the strain energy stored in the shaft in terms of the applied torque 7,
and the work done by the applied torque under static equilibrium conditions.
b) Write down the work-energy equation for the system under static equilibrium

conditions. Use the work-energy method to determine the static rotation of
connector D.

c) Use Castigliano’s theorem to determine the static rotation of D.

()'T-ft (flh. &5‘\)0; T-Ve=0= TJ;{O
(QTBQ ‘:‘a. X 0= \Y\:\E

S-S
3{%}“ 54
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