

Equilibrium:

a) Shaft (3) is free at end D. $\Rightarrow T_{3}=0$

Connector C: $\quad T_{3}+2 T-T_{2}=0 \Rightarrow T_{2}=2 T$
Connector B:

$$
\begin{equation*}
T_{2}-T_{1}=0 \Rightarrow T_{1}=T_{2}=2 T \tag{1}
\end{equation*}
$$

Where, T_{1}, T_{2}, T_{3} are the torques carried by the three shafts.
Polar moments are represented here as J_{i}. (They can also be denoted as I_{p})
b) $\theta_{1}=\frac{T_{1} L_{1}}{G_{1} J_{1}}=\frac{(2 T)(L)}{(2 G)\left(U_{1}\right)}=\frac{32 T L}{\pi G d^{4}} ; \quad \quad \theta_{2}=\frac{T_{1} L_{1}}{G_{1} J_{1}}=\frac{(2 T)(1.5 L)}{(G)\left(J_{2}\right)}=\frac{96 T L}{65 \pi G d^{4}}$
, where θ_{1}, θ_{2} are rotations between the ends of shafts (1) and (2) respectively. Note that $\theta_{3}=0$, since torque carried by shaft (3) is 0 .

Compatibility:

$$
\begin{align*}
& \theta_{A}=0 \quad(\text { wall }) \tag{3}\\
& \theta_{B}=\theta_{A}+\theta_{1}=\theta_{1} \tag{4}\\
& \theta_{C}=\theta_{B}+\theta_{2}=\theta_{1}+\theta_{2} \tag{5}\\
& \theta_{D}=\theta_{C}+\theta_{3}=\theta_{C} \tag{6}
\end{align*}
$$

From (4): $\theta_{B}=\frac{32 T L}{\pi G d^{4}}$
From (5): $\theta_{C}=\theta_{B}+\theta_{2}=\frac{32 T L}{\pi G d^{4}}+\frac{96 T L}{65 \pi G d^{4}}=\frac{2176}{65} \frac{T L}{\pi G d^{4}}=\theta_{D}$

Element M

Element N

