Summary

The strain energy functions for the three types of members investigated here (axially-
loaded members, torsionally-loaded members and members with flexural and shear
stresses due to bending) are summarized below.

, , . . Strain energy:
Member loading type | Strain energy: load-based displacement-based
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In this chapter, we will focus on the use of the load-based formulations of strain energy
listed above. In a later chapter when we work with the finite element formulation, we will
use the dispacement based formulation.
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Deflection analysis — Castigliano’s method

The procedure for deflection analysis using Castigliano’s method:

1) First determine if you need to include any “dummy” loads (recall that the
Castigliano’s method can produce deflections/rotations at points on the structures
at which applied forces/moments act and in directions in which these
forces/moments act). Add in ALL of the needed dummy loads from the start; this
can save you a lot of time down the road.

down the equilibrium equations; these equilibrium equations will be written in

i1) Draw a free body diagram (FBD) of the entire structure, and from this FBD write]
terms of the external reactions.

o [f DETERMINATE, solve these equations for the external reactions.

o [f INDETERMINATE, establish the “order” N, of the indeterminancy (i.e.,

equal to the number of additional equations needed to solve for external
reactions). From your external reactions, choose a set of » redundang

reactions (R, ; i=1,2,...,Ny). Write the remaining reactions in terms o

these N R redundant reactions.

iii) Divide beam into sections: x, <x<x, . This section division is dictated by:
support reactions, beam geometry changes, and/or load chan&%s (concentrated
forces/moments, line load definition changes, etc.). V[, i ‘F. .

1v) For each section, draw an FBD of either the left or right side of the body from a
cut through that section of the beam. From this FBD, determine the distribution
of bending moment M, (x), shear force V,(x) and axial force Fy;(x) through

that section of the structure. Using these, write down the strain energy in that
section of the structure using:

1 il 5 f Yitl s 1 il i
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l l l
From these strain energy terms, write down the total strain energy for the

structure: U =U,+U, +U, +.... It is recommended that you do NOT expand out
the “squared” terms in these integrals at this point.

v) If the problem is INDETERMINATE, first set up the additional algebraic
equations for_, the reactions of the problems using Castigliano:

i=1,2,.,N,

Be sure 10 set any dummy loads to zero in the end. Solve these equgtions with
the equilibrium equations from 1) above. %U? tOV’ PO\ LY.

vi) Determine the desired deflections/rotations using Castigliano’s method:
0,=09U /dP,. Be sure to set any dummy loads to zero in the end.
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Example 16.7
Determine the reaction at end B of the beam shown.
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Equilibrium — FBD of entire beam

From here, we see that the problem 1s statically indeterminate: 3 unknowns ( By, D, and

M ) and only two equations. Here, we will choose By to be our redundant reaction:

D F,=B,-wlL+D,=0 = D =wlL-B, 3 \M\LW\AS
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Determining internal bending moment
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Strain energy in beam (ignoring contributions from shear stress/strain)
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Castigliano’s theorem

With By being our choice for the redundant reaction:
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Problem B

Find the vertical deflectiop,of the beam at point B and the angle of rotation of the beam a
B. Let £ and / be the Young’s modulus

and sgcond area moment of the beam cross
section, respectively, of the beam. ”Q\j\,oi J\LPC\ \
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Problem C

Determine the reactions at rollers B and C on the beam below. Let £ and I be the

Young’s modulus and second area moment of the beam cross section, respectively, of the
beam.
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Example 16.8
For the following examples, set up the problem for determining the requested deflections
using Castigliano’s method:

e draw appropriate FBDs;

e determine internal results for each section;

e set up the integrals for calculating the required deflections;

e explain how Castigliano’s method 1s used to solve. Discuss the application of
dummy forces (when needed) and how to handle redundant forces for
indeterminate structures.

Problem A

Find the load carried by member (2) of the structure below. Let £ and A be the Young’s
modulus and cross-sectional area, respectively, of member (2), whereas E and I are the
Young’s modulus and second area moment of the cross section of (1), respectively.

Lot
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