Summary

The strain energy functions for the three types of members investigated here (axiallyloaded members, torsionally-loaded members and members with flexural and shear stresses due to bending) are summarized below.

Member loading type	Strain energy: load-based	Strain energy: displacement-based
axial	$U=\frac{1}{2} \int_{0}^{L} \frac{F^{2} d x}{E A}$	$U=\frac{1}{2} \int_{0}^{L} E A\left(\frac{d u}{d x}\right)^{2} d x$
torsion	$U=\frac{1}{2} \int_{0}^{L} \frac{T^{2}}{G I_{p}} d x$	$U=\frac{1}{2} \int_{0}^{L} G I_{p}\left(\frac{d \phi}{d x}\right)^{2} d x$
bending - flexural	$U_{\sigma}=\frac{1}{2} \int_{0}^{L} \frac{M^{2}}{E I} d x$	$U_{\sigma} \frac{1}{2} \int_{0}^{L} E I\left(\frac{d^{2} u}{d x^{2}}\right)^{2} d x$
bending - shear	$U_{\tau}=\frac{1}{2} \int_{0}^{L} \frac{f_{s} V^{2}}{G A} d x$	

In this chapter, we will focus on the use of the load-based formulations of strain energy listed above. In a later chapter when we work with the finite element formulation, we will use the dispacement based formulation.

Deflection analysis - Castigliano's method

The procedure for deflection analysis using Castigliano's method:
i) First determine if you need to include any "dummy" loads (recall that the Castigliano's method can produce deflections/rotations at points on the structures at which applied forces/moments act and in directions in which these forces/moments act). Add in ALL of the needed dummy loads from the start; this can save you a lot of time down the road.
ii) Draw a free body diagram (FBD) of the entire structure, and from this FBD write down the equilibrium equations; these equilibrium equations will be written in terms of the external reactions.

- If DETERMINATE, solve these equations for the external reactions.
- If INDETERMINATE, establish the "order" N_{R} of the indeterminancy (i.e., equal to the number of additional equations needed to solve for external reactions). From your external reactions, choose a set of n redundant $]$ reactions ($R_{i} ; i=1,2, \ldots, N_{R}$). Write the remaining reactions in terms of \rfloor these N_{R} redundant reactions.
iii) Divide beam into sections: $x_{i}<x<x_{i+1}$. This section division is dictated by: support reactions, beam geometry changes, and/or load changes (concentrated forces/moments, line load definition changes, etc.). V, M, F, T.
iv) For each section, draw an FBD of either the left or right side of the body from a cut through that section of the beam. From this FBD, determine the distribution of bending moment $M_{i}(x)$, shear force $V_{i}(x)$ and axial force $F_{N i}(x)$ through that section of the structure. Using these, write down the strain energy in that section of the structure using:

$$
U_{i}=\frac{1}{2 E I} \int_{x_{i}}^{x_{i+1}} M_{i}^{2} d x+\frac{f_{s}}{2 G A} \int_{x_{i}}^{x_{i+1}} V_{i}^{2} d x+\frac{1}{2 E A} \int_{x_{i}}^{x_{i+1}} F_{N i}^{2} d x
$$

From these strain energy terms, write down the total strain energy for the structure: $U=U_{1}+U_{2}+U_{3}+\ldots$. It is recommended that you do NOT expand out the "squared" terms in these integrals at this point.
v) If the problem is INDETERMINATE, first set up the additional algebraic equations for the reactions of the problems using Castigliano: $0=\frac{\partial U}{\partial R_{i}} \quad i=1,2, \ldots, N_{R}$
Be sure to set any dummy loads to zero in the end. Solve these equations with the equilibrium equations fromi) above. \#solue for reachions.
vi) Determine the desired deflections/rotations using Castigliano's method: $\delta_{i}=\partial U / \partial P_{i}$. Be sure to set any dummy loads to zero in the end.

Example 16.7

Determine the reaction at end B of the beam shown.

Equilibrium -FBD of entire beam

From here, we see that the problem is statically indeterminate: 3 unknowns (B_{y}, D_{y} and M_{D}) and only two equations. Here, we will choose B_{y} to be our redundant reaction:

$$
\left.\begin{array}{l}
\sum F_{y}=B_{y}-w_{0} L+D_{y}=0 \Rightarrow D_{y}=w_{0} L-B_{y} \\
\sum M_{B}=-\left(w_{0} L\right)\left(\frac{L}{2}\right)+D_{y} L+M_{D}=0 \Rightarrow M_{D}=-\left(w_{0} L-B_{y}\right) L+\frac{1}{4} w_{0} L^{2}
\end{array}\right\} \begin{aligned}
& 3 \text { unkurs } 2 \text { equs }
\end{aligned}
$$

Determining internal bending moment

Strain energy in beam (ignoring contributions from shear stress/strain)

$$
U=\frac{1}{2} \int_{0}^{L} \frac{M^{2}}{E I} d x=\frac{1}{2 E I} \int_{0}^{L}\left(-\frac{w_{0} x^{2}}{2}+B_{y} x\right)^{2} d x
$$

Castigliano's theorem

$\frac{\partial U_{M}}{\partial B_{y}}=\frac{1}{E} \int M \frac{\partial M}{\partial B_{y}} d x$.

With B_{y} being our choice for the redundant reaction:

$$
\begin{aligned}
0 & =\frac{\partial U}{\partial B_{y}}=\frac{1}{2 E I} \int_{0}^{L} 2\left(-\frac{w_{0} x^{2}}{2}+B_{y} x\right)(x) d x=\frac{1}{E I} \int_{0}^{L}\left(-\frac{w_{0} x^{3}}{2}+B_{y} x^{2}\right) d x \\
& =\frac{1}{E I}\left[-\frac{w_{0} x^{4}}{8}+\frac{B_{y} x^{3}}{3}\right]_{x=0}^{x=L}=\frac{1}{E I}\left[-\frac{w_{0} L^{4}}{8}+B_{y} L^{3}\right] \Rightarrow B_{y}=\frac{3}{8} w_{0} L
\end{aligned}
$$

Problem B
Find the vertical deflection of the beam at point B and the angle of rotation of the beam at B. Let E and I be the Young's modulus and second area moment of the beam cross section, respectively, of the beam.

Negled aurar.

C

$\left.\begin{array}{l}\text { (1) }(\Sigma M)_{A}=-M_{A}+M_{c}+M_{D}-w_{0}\left(\frac{L}{2}\right)\left(\frac{L}{4}\right)-P_{D}\left(\frac{L}{2}\right)+C_{y} L=0 \\ \text { (2) } \Sigma F_{y}=A y+C_{y}-w_{0}\left(\frac{L}{2}\right)-P_{D}=0\end{array}\right\} \begin{aligned} & 4 \text { unknowns } \\ & \frac{2 \text { equs. }}{2}\end{aligned}$

Energy methods

$$
\begin{aligned}
& \Sigma F_{y}=A_{y}-\omega_{0} x-H_{1}=0 \\
& \equiv M=-M_{A}+M_{1}-A_{y} x+\omega_{0} x\left(\frac{x}{2}\right)=0 \\
& M_{1}(x)=M_{A} \perp \lambda_{y} x-w_{0} \frac{x^{0}}{2}
\end{aligned}
$$

Section BC

$$
\begin{aligned}
& \quad E M=-M_{A}+M_{D}+M_{2}-A_{y y} x+w_{0}\left(\frac{L}{\partial}\right)\left(x-\frac{L}{4}\right)+P_{0}\left(x-\frac{L}{2}\right) \dot{0} \\
& M_{2}(x)=M_{A}-\mu_{D}+A_{y} x-\omega_{0}\left(\frac{L}{2}\right)\left(x-\frac{L}{4}\right)-P_{D}\left(x-\frac{h}{2}\right) \\
& U=U_{1}+U_{2} \\
& U=\frac{1}{2 E I} \int_{0}^{L_{2}} M_{1}^{2} d x+\frac{1}{2 E I} \int_{L / 2}^{L} M_{2}^{2} d x
\end{aligned}
$$

Find reartions

$$
\begin{aligned}
& {\left[\frac{\partial V}{\partial A y}\right]_{P_{0}, M_{0}=0}=0=\frac{1}{E \pm} \int_{0}^{1 / 2} \mu_{1} \frac{\partial M}{\partial A_{y}} d x+\frac{1}{E} \int_{L / 2}^{L} \mu_{2} \frac{\partial M_{2}}{\partial H_{y}} d x \text {.] }} \\
& \frac{\partial M_{1}}{\partial A_{y}}=x \quad \frac{\partial M_{2}}{\partial A_{y}}=x \\
& 0=\frac{1}{E I} \int_{0}^{1 / 2}\left(\mu_{A}+A_{y x}-\omega_{0} \frac{\nu}{\partial}\right) x d x+\frac{1}{E} \int_{V_{2}}^{L}\left[\mu_{A}+A_{g x} x-\omega_{0}\left(\frac{L}{2}\right)\left(x-\frac{t}{4}\right)\right] x d x \text {. (3) } \\
& {\left[\frac{\partial U}{\partial M_{A}}\right]_{P_{D} M_{D}=0}=0 \quad \frac{\partial M_{1}}{\partial M_{A}}=1 \quad \frac{\partial M_{1}}{\partial M_{A}} ; I .}
\end{aligned}
$$

$$
0=\frac{1}{E I} \int_{0}^{L / 2}\left(M_{A}+A_{y x}-\omega_{0} \frac{x^{2}}{2}\right) d x+\frac{1}{E S} \int_{L_{y}}^{L}\left[M_{A}+A_{y x}-\omega_{0}\left(\frac{k}{2}\right)\left(x-\frac{x_{6}}{6}\right)\right] d x!(4)
$$

Equs (1-4): solve for reodions.
Find the displacements:

$$
\begin{gathered}
\frac{\partial M_{1}}{\partial P_{D}}=0 \quad \frac{\partial M_{D}}{\partial P_{D}}=-(x-L / 3) \\
\left.\delta_{B}=\left[\frac{\partial 0}{\partial P_{0}}\right]_{P_{0}, \mu_{D}=0}=0+\frac{1}{E} \int_{L_{2}}^{L}\left[M_{A}+A_{y} x-w_{0}\left(\frac{L}{\partial}\right)(x-L / 4)\right)\right]\left[-\left(x-\frac{L}{\partial}\right)\right] d x .
\end{gathered}
$$

Problem C
Determine the reactions at rollers B and C on the beam below. Let E and I be the Young's modulus and second area moment of the beam cross section, respectively, of the beam.

$\left.\begin{array}{l}\left(E M_{A}=-M_{A}+B_{y}\left(\frac{1}{3}\right)+C_{y}\left(-\omega_{0}\left(\frac{1}{2}\right)\left(\frac{3}{4}\right)=0\right.\right. \\ \left(E F_{y}\right)=A y+B y+C y-4\left(\frac{(2)}{5}\right)=0\end{array}\right\} \begin{aligned} & 4 \text { un knows } \\ & 2 \text { aquas. }\end{aligned}$

$$
\begin{aligned}
& \left(E M_{1}=-\mu_{1}+C y_{x}-w_{0} \frac{x_{2}}{2}=0\right. \\
& M_{1}(x)=C_{y x}-\omega_{0} \frac{3}{2} \\
& E_{f y}=v_{1}+e_{y}-w_{0} x=0 \Rightarrow V_{(}(x)=-C_{y}=u x .
\end{aligned}
$$

Energy methods
Topic 16: 25
Mechanics of Materials

$$
V_{2}(x)=-D_{y}-C_{y}+m_{0}\left(\frac{4}{3}\right)
$$

$$
\begin{aligned}
& \frac{\partial U}{\partial B_{y}}=0=\frac{1}{E I} \int_{0}^{1 / \mu_{1}} \mu_{1} \frac{\partial \mu_{1}}{\partial B_{y}} d x+\frac{1}{E x} \int_{L_{2}}^{1} \mu_{2} \frac{\partial \mu_{2}}{\partial B_{y}} d x . \\
& \frac{\partial M_{1}}{\partial B_{y}}=0 \quad \frac{\partial M_{2}}{\partial B_{y}}=\left(x-L_{2}\right) \\
& 0=\frac{1}{ש} \int_{L / 2}^{L}\left[B_{y}\left(x-\frac{L}{3}\right)+C_{y} x-w_{0}\left(\frac{1}{y}\right)\left(x-\frac{1}{4}\right)\right]\left(x-\frac{1}{2}\right) d x \text {. } \\
& \frac{\partial U}{\partial C_{y}}=0
\end{aligned}
$$

Example 16.8

For the following examples, set up the problem for determining the requested deflections using Castigliano's method:

- draw appropriate FBDs;
- determine internal results for each section;
- set up the integrals for calculating the required deflections;
- explain how Castigliano's method is used to solve. Discuss the application of dummy forces (when needed) and how to handle redundant forces for indeterminate structures.

Problem A

Find the load carried by member (2) of the structure below. Let E and A be the Young's modulus and cross-sectional area, respectively, of member (2), whereas E and I are the Young's modulus and second area moment of the cross section of (1), respectively.

