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17. An introduction to the finite element method

Objectives:
To develop and use the finite element equilibrium equations for determining the stress in an
axially-loaded structural member.

Background.

Equivalent stiffness for a rod element

Consider the rod element shown below that is of length L with a Young’s modulus £ and
cross-sectional area 4 (each of which can be a function of position x).
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Note that the axial load along the length of the element is a constant value of P. As we have
seen before, the elongation of this element is given by:
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where u and u, are the end displacements of the rod element and (EA)ave 1s the average

value of EA over the element’s length. From this we have:

f — (EA)ave (1)
) L
Consider now the linear spring above of stiffness k. The elongation of the spring is given by:
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Comparing the above, we see that the rod can be treated as a spring having a stiffness of:



Strain energy in rods
In general, we can write the strain energy in a body in terms of its strain energy density # as:

U= [gav

vol

where the strain energy density for an axially-loaded rod can be written as:
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Force potentials
Consider a conservative force F; acting at point x,on a rod. The potential of this force is
defined as v
M s J
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1
If M forces act on the rod, the total potential due to these forces is:

M
== Fa
i=1

System potential energy
The total potential energy for the system IT is defined as the sum of the potential due to the
externally-applied forces and the potential due to the strain energy in the system:

M
JI=T1, +Ty == Fu +U
i=1

where U is the strain energy in the system.

Lecture topics:
a) Principle of minimum potential energy
b) The development of the stiffness matrix for a system of springs
c¢) Finite element method for rods — using the direct method

d) Some numerical results from the use of the finite element method on problems in 2D
elasticity
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Lecture notes
Principle of minimum potential energy
For a given a set of “admissible” displacement fields for a conservative system, an

equilibrium state of the system will correspond to a state for which the total potential

energy Il is stationary. For a stable equilibrium state, this stationarity will correspond
to a minimization of the potential energy. oS
M

NOTE: An admissible displacement field for a rod is one that satisfies all of the displacement

boundary conditions of the problem (the boundary conditions related to prescribed forces do
not need to be satisfied by the displacement field).

We will use the above principle of minimum potential energy in solving for displacements in
the following three rod examples.
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The stiffness matrix

Before we consider the general form of the equilibrium equations for a rod through the use of
the minimum potential energy approach, let us first look at the strain energy in a set of
springs that are connected together in series.

Say we consider a single spring of stiffness k, as shown below:

P k P
—> —>
i U

The strain energy in the spring is given by:

1,0 1 2 1 9 2
U=5k6 =§k(u2—u1) =§k(u2—2u]u2+ul)
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where I:K ] is the “stiffness matrix” for the spring.
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Consider now two springs, having stiffnesses of & and k,, connected in series as shown
below:

p ky ko p
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The total strain energy for this system of springs is given by:

1 1
U=§"1(”2_”1)2+§k2(“3_“2)2l

%k (u2 2uu2+u1)+;k ( 2u2u3+u§)

1 —
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| U ' keyuy = kyuy
= > U, —kyu, +(k1 +k2)u2 — kyu,
Uy —kyuy + iyt
T
u, k, -k 0 u,
1 1
=5 —ky ki +ky, -k, Uy =§{“}T[K]{”}
Uy 0 —k, k, Uy

where, again, [K ] 1s the stiffness matrix for the system of springs.
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Example 17.1
Use the principle of minimum potential energy to determine the displacement of connector C
in the rod.
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SOLUTION
Here we represent the above rod by the set of two springs in series shown below:

where for A0 = td? / 4 we have:

E4 %;%ﬁ

b=
BC L
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The total strain energy in the rod is given by:

1 2 1 2 1 2
,=U= EkBC”_C +EkC_Du.C_'_= E(ch "‘kCD)”C

and the potential due to the forces is:
My =-Puc _(_PB)uB — Ppup = _P”cl
From this, we can write the system potential energy as:

3EAuE
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Note that the potential energy function is quadratic in the M(uc)

connector displacement u. . The stationarity (minimization) of

IT1s corresponds to the condition that:

3E.
a—H=0 = —P+ﬂ=0 = U PL
Ju. L L= 3E4,

uc

-

min{H(uC )} where ;L—tnc =0

How does this answer for the displacement of C compare with the exact value found using

our earlier analysis?
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Example 17.2
Use the principle of minimum potential energy to determine the displacement of connectors
C and D in the rod.
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The total strain energy in the rod 1s given by:

1 2 1 2 1 2
I, =U= EkBCuC T EkCD (up —uc) + EkDHuDl
The potential energy due to the forces is:
M, ==2Pug— Pup, —(=Py)uy — Pyu, =—=2Pug. - Puj,
From this, we can write the total potential energy as:

Edy
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We see that the potential energy is a “bowl-shaped” quadratic function of two variables: u
and u,, (the displacements of connectors C and D). A stationary (minimum) value for ITis

found by setting the partial derivatives of I'T with respect to the variables u.and u, equal to

Zero:
oIl EA, (uc.up)
—=-2P+—| 5u,—4u, (=0
a”c L [ C D:I
oIl E4, .
—=—P+——| -4u,+13u, [=0
auD L I: C D:I
or,
%[ 5 —4} e ={ 2P} -
L | -4 13 up P ;
Solving the above pair of algebraic equations gives: —— e -~
up =0.61222% ‘e oo
EAO min{H(uC,uD)} where — =——=0
PL auc al/tD
up=02653——
E4,

How do these answers for the displacements of C and D compare with the exact values found
using our earlier analysis?
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The stiffness matrix

Before we consider the general form of the equilibrium equations for a rod through the use of
the minimum potential energy approach, let us first look at the strain energy in a set of
springs that are connected together in series.

Say we consider a single spring of stiffness k, as shown below:

P k P
—— e NN—e—
—> —>
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The strain energy in the spring is given by:

1,0 1 2 1 9 2
U=5k6 =§k(u2—u1) =5k(u2—2u]u2+ul)
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= 5':1/{1 (ku1 — ku, ) +u, (—kul + ku, ):|

T

1
2 u, —ku, + ku,

L [ e T

)

where I:K ] is the “stiffness matrix” for the spring.
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Consider now two springs, having stiffnesses of & and k,, connected in series as shown
below:

P P
—— AN AN —
| —> | —> | ——>
h ] us

The total strain energy for this system of springs is given by:
1 2 1 2
U=k (1 -14) +§k2(“3‘“2)
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e Ekl (u2 —2u1u2 +u )+5k2 (u3 —2L12u3 +u2)

1 1r
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| u ' keyuy = kyuy
= > U, —kyu, + (k] + kz)u2 — kyu,
Uy —kyuy + iyt
T
| u, k, -k 0 u,
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Uy 0 —k, k, Uy

where, again, [K :| 1s the stiffness matrix for the system of springs.
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For a general set of N springs in series:

k ky ks kyn_y ky

P B P
L L) usz Uy UN+
we have:
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Observations

a)

b)

A
n,
Ve
Lo
(@

|

g

|

d)

K=

As seen in the results above, the strain energy for a set of springs connected in series
. . T .
is represented by the “matrix inner product” {u} |:K :l{u}/ 2, where [K ] 1s the

“stiffness matrix” and {u} is a vector of displacements.

Note that the stiffness matrix [K ] 1s symmetric; that is, |:K ]:[K]T (if you

interchange its rows and columns, the matrix is unchanged). For us here, we can use
this as a check to insure that we have constructed the matrix correctly (that is, if the
matrix in the end is not symmetric, we have made a mistake). There are other, more
physical implications related to this symmetry.

The stiffness matrix 1s of a “tridiagonal” structure: the major diagonal has one super-
diagonal and one sub-diagonal, with the remaining elements of the matrix being zero.
This structure shows how displacements of only adjacent spring nodes are coupled in
this formation of the strain energy.

Recall that the stiffness matrix for a single spring of stiffness k; was found to be:

|: k(z’)}= ki _ki
—k;  k
The total stiffness matrix [K ] 1s formed from a combination of these individual

spring stiffness matrices along the tridiagonals of [K ] as:

1 2 3 N -1 N N+1
1 H 1 1 1 H e
bk ] e e
_kl 1 + k2 _k2 ,,,,,,,,,,,,,,,,, - - § = - E — =
) I_—kz k, + k3J —ky |
— k3 . .

element 1 = D

eleme[wt 2 |:—k N=2 k N—

element 3 - g
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The finite element equations for rods — direct method

u(x)
F I 4 F F,
X=X, X=x3 X=Xy
;
L

Consider here the axial motion u(x) for a rod of length L under the action of a number of
EXTERNAL axial loads F;, where the value of £4 in the rod can vary with position x. For

our analysis, we will subdivide the rod into a set of N “elements” with the length of the i"
element being L, . A set of N+1 “nodes” at x = x|,x,,...x,,,xy,; Will define the boundaries of
these elements. Acting at a given node is an EXTERNAL “nodal force” F,; i=1,2,.,N+1.
These elements and nodes are shown below.

Recall that the stiffness of the i element of the rod can be represented by:

= A
i L.

1

where (EA)l_ is the average value of EA over the i™ element. With this, we replace the rod by

a set of springs in series, as shown below, with each spring representing the stiffness of the
corresponding element of the rod.

node 1 node 2 node 3 nodei—1 nodei node N—2 node N—1 node N nodeN +1
A\ e\ s\ o\ s\ AAd\ A\ Ay
v
%OD —f —Fe —Pe —»—»- —be —Fe—e
i element 1 E element 2 E | element i— 1 i I ement N — ’ l ement N — I element N E
L b I' L, l' l' L l‘ l Ly, l' Ly ’ Ly |
ok | ky P ki P ky_o ;kN_l : ky
SPRING EQUIVALENT of ROD —WW—e—WW—eo—\WW—eo—WW—eo—WW'—e— W AWW—o—'—e
i e e s e i o
i Uy usz u; Uy-p Uy Un+
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a) Potential due to externally-acting forces acting on a rod

Here we have external forces Facting at nodes x;; i=1,2,...,N +1 on the rod. The potential

of these forces is given by:

N+l
Hp=- 2 Fu,
i=1

b) Strain energy in a rod
As we are viewing the rod as a set of springs in series, the strain energy for the rod can be
written as:

HU=U—522KUuluJ
i=1 j=1
where:
K kO |
~ky k+ky, —k, 0
0 -k, ky+ky —k
[K]=]%,]= 0~k  ky+k, 0
kv, 0O
0 by ky_thy —ky
0 ~ky Ky

1s the stiffness matrix for the rod.

c) The total potential energy
The TOTAL potential energy of the system can be written as the sum of the potential of the

applied external forces IT,, and the strain energy IT;; in the rod:
N+l N+1IN+1

I
M=Tl+T0y ==, Fuy+— >, 3 Ky,
i=1 =1 j=I

Finite element methods Topic 17:14 Mechanics of Materials



Finite element equilibrium equations
The potential energy expression for the finite element model of a rod can be expressed as:

N+1 N+1N+1
II=- ZFuk+ ZZKkpuku
k 1 p=1

where Fare the concentrated forces acting on the N+1 nodes of the rod and [K :| 1s the

stiffness matrix derived earlier for the rod. With the potential energy being written in terms
of the N+1 nodal displacements u, ; i=1,2,...,N +1, the minimum potential energy theorem

says that the equilibrium state of the rod is described by the following set of equations for
i=12,.,N+1:

L [zF] [zzK]

k=1 p=1
N+1 du 1 N+1N+I1 du N+1N+1
k k
Z Fk Z Z Kkp o, U, +> Z z Kkp”k ; product rule
k 1 p=1 k 1 p=1 i
N+1 1N+1
:_F +3 Z Klp p+5 Z Kkiuk
k=1
N+1 1N+1

=—F4+= 2 K. u i» p+ K PR/P K K ; (symmetric stiffness matrix)
N+1

=—F+ 2 Kl.pup
p=l

zKF - [1.<J{u}={F}1

or,

Finite element methods Topic 17:15 Mechanics of Materials



Enforcement of boundary conditions
Recall that the displacement field used in the derivation of the equilibrium equations is to be
“admissible”; that is, 1t must satisfy the displacement boundary conditions of the problem. If

the k™ node is fixed, we effectively set u, =0. The enforcement of this fixed boundary

condition can be brought about by eliminating the kth column of the stiffness matrix [K],

eliminating the kth row of [ K] and the kth row of the force vector {F } .

To demonstrate this, suppose that for a fixed-free rod, where the end at x = Lis fixed, we
have developed a set of equilibrium equations using 4 nodes ( N =4 ). Therefore, the 4™ node

is fixed, u, =0. With the set of equilibrium equations we strike out the fourth column and

row of the stiffhess matrix and the fourth row of the force vector:

U 2
U, F,
s B Fy
L J= 7

This leaves us with a 3% 3stiffness matrix and g force vector with 3 rows:

F,
—f ¥ O ki + haua =¥
Ky, Ky =3 5 W L \

K21

0 K Ky Iy \(\u‘ -\g‘“a " ;\

Calculation of stress
Recall that the internal axial load carried by the i axially-loaded component is given by:
= Wi m 8 ) = T
1

From this, we can express the axial stress in this component as:

P E
i =j=f(”i+1 ‘”1)1

1 1

J

o
u;)

'N

Q

Once the equilibrium equations [K ]{u}: {F } are solved for the nodal displacements, we

can determine the average stress across the i element using the above relationship.
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Method
Consider the following steps in setting up and solving the finite element displacement
equations:

Defining the nodes and elements for the problem. Choose a set of N+1 nodes along

the length of the rod at locations x, (= 0),x2,x3,...,xN,xN+1(= L) . The subdomain of

X; <x <x,,,is known as the i"™ element of length Li=x,,—x, fori=12, N The
value of &, = (EA)i / L, is determined through the average value of EA over the i"

element and the element length Z, .

Constructing the global stiffness matrix. Construct the stiffness matrix [K]. The
resulting matrix will be tri-diagonal and of size (N +1)xX(N +1).

Constructing the force vector

Construct the force vector {F } as being made up on the resultant external force
acting on each node. The resulting vector will be of length N+1.

Enforcing fixed-displacement boundary conditions. The fixed-displacement boundary
conditions are enforced through the elimination of appropriate terms in the resulting

stiffness matrix [ K] and forcing vector {F } . For example, if the i" node has a fixed
(zero) displacement, we eliminate the i" row and i column of [K] and the i" row of

{F } . If the problem has “n” fixed nodal displacements, then the stiffness matrix and

force vector will be of sizes (N -n+ 1) X (N -n+ 1) and N —n+1, respectively'.

Solving. The nodal displacements u, ; k=1,2,...,N —n+1 are found from the
solution of the algebraic equilibrium equations:

(K J{u}={F}
through a linear equation solver in an application such as Matlab or Mathematica.

Stress calculations
The average stress across the ith element 1s found from:

E.
0; zfl_(”m_”i)
l

A Matlab code for constructing the stiffness matrix and force vector for a general N-element
finite element mesh, for enforcing fixed-displacement boundary conditions and solving for
the displacement of the non-fixed nodes is shown on the following page.

If no displacement boundary conditions are applied, the rod will be physically

unconstrained against motion. Consequently, there will be no equilibrium solution possible.
The stiffness matrix for an unconstrained system will be singular, and therefore, non
invertible.
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Example 17.3 FeM.
Use the pemrer YT ;
rod.

to determine the displacement of end B in the
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