12. Thin-walled pressure vessels

Objectives:

To study the combined axial and hoop stress state in the sidewalls of cylindrical vessels and in spherical pressure vessels.

Background:

Relationship between the resultant normal force F due to constant normal stress σ acting over an area A:

$$\sigma = \frac{F}{A}$$

Lecture topics:

- a) Axial stress.
- b) Hoop stress.
- c) Combined state of stress.

Lecture Notes

We have so far understood the stresses, and deformations of thin rods/beams in (a) axial deformation, (b) torsion, and (c) in bending. In this class we will consider one more type of structure that is more "two-dimensional" compared the one-dimensional beam models.

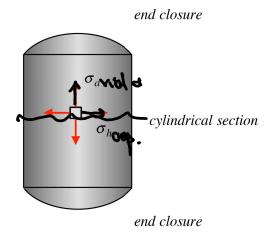
Thin-walled pressure vessels have a number of applications:

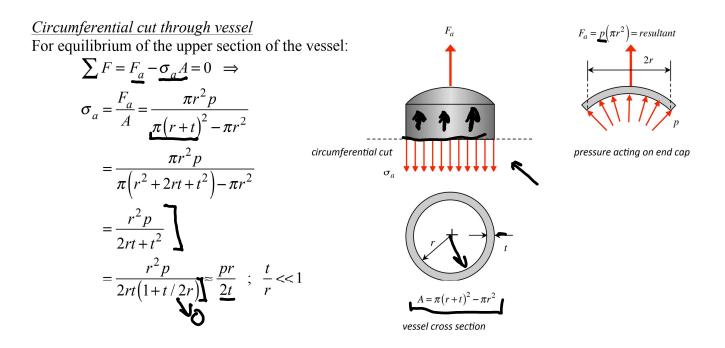
- Vacuum chambers
- Pressure vessels used for storing various kinds of fluids under high pressure
- Natural gas containers, hot air balloons, coke cans, gel and aerosol cans, chemical and nuclear reactors, oil refining containers, soap bubbles
- Liquid fuel containers in space vehicles
- Submarine hulls

To prevent the explosion or breakage of these pressure vessels it is important to design these to keep stresses within an acceptable level.

Cylindrical pressure vessels

Consider a thin-walled circular-cross section pressure vessel with an internal pressure of p, inner radius r and wall thickness t.





 σ_a is the *axial* component of normal stress in the vessel due to the internal pressure.

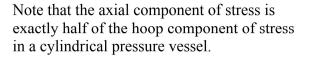
Longitudinal cut through vessel

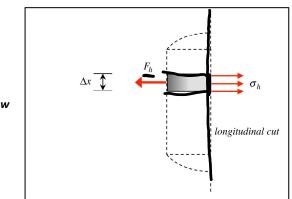
For equilibrium of the left portion of a hoop section of the vessel (of height Δx):

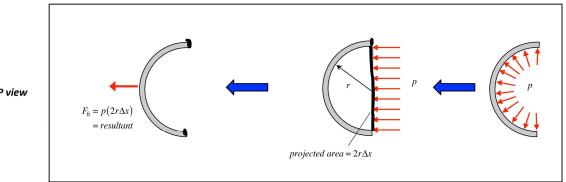
$$\sum F = F_h - \sigma_h A = 0 \implies$$
$$\underline{\sigma_h} = \frac{F_h}{A} = \frac{2rp\Delta x}{2t\Delta x} = \frac{pr}{t}$$

 σ_h is the "hoop" component of normal stress in the vessel due to the internal pressure.

SIDE view



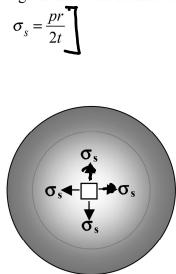


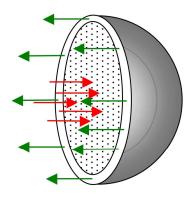


TOP view

Spherical pressure vessels

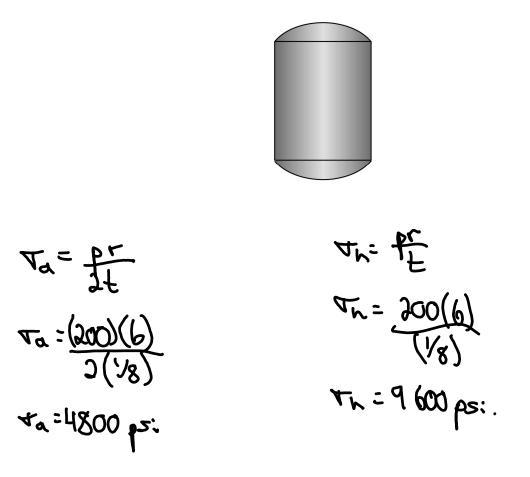
Consider a thin-walled spherical pressure vessel with an internal pressure of p, inner radius r and wall thickness t. Using an equilibrium relationship on the hemispherical section of the tank gives a normal stress of:





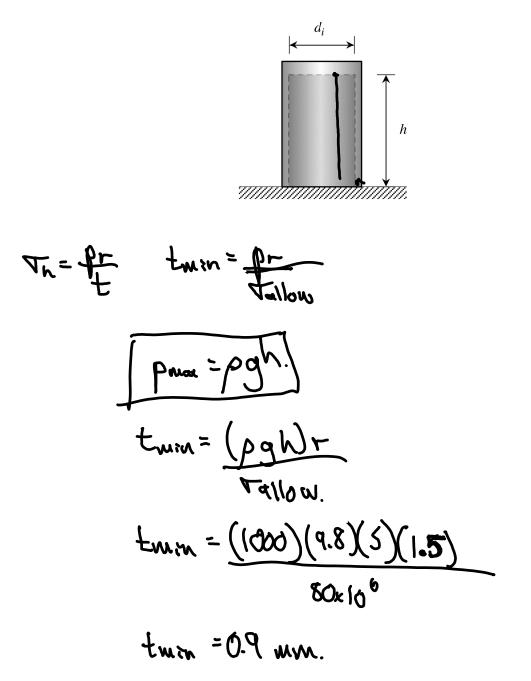
Example 12.1

A steel propane tank for a barbecue grill has a 12-in inside diameter and a wall thickness of 1/8 in. The tank is pressurized to 200 psi. Determine the axial and hoop components of stress in the wall of the tank.



Example 12.2

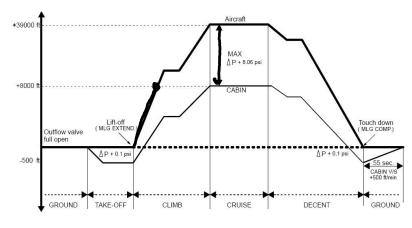
A vertical standpipe has an inside diameter of $d_i = 3m$ and is filled with water to depth of h = 5m. If the allowable hoop stress is 80MPa, what is the minimum wall thickness of the tank?

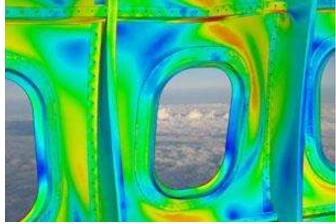


Thin-walled pressure vessels

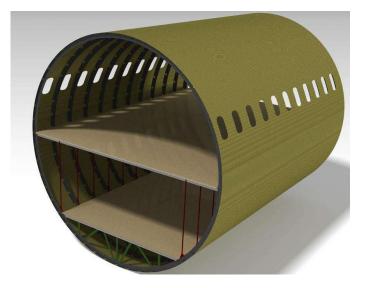
Mechanics of Materials

Airplane as a Pressure Vessel





https://aviation.stackexchange.com/questions/19291/whatis-the-pressure-in-a-civil-aircraft-fuselage-at-flight-ceiling



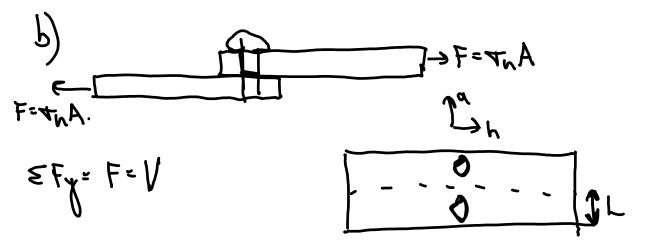
An airplane exhibits a pressure difference of <u>56 kPa</u> in the fuselage at 39 000 ft cruising altitude. The radius of the fuselage is <u>4 m</u>. The tensile yield strength of aircraft grade aluminum is 276 MPa.

- a) What thickness is required to achieve a factor of safety of 2.5?•
- b) Rivets hold the fuselage together. The rivets have a diameter of 3.175 mm and a shear strength of 95 MPa. What density of rivets are required to reach a factor of safety of 2.5?

a)
$$\nabla_{a} = \frac{fr}{5t}$$
 $\nabla_{h} = \frac{fr}{ft} = \frac{\nabla r}{F5} = \frac{\nabla r}{2i5}$

$$\frac{(56r10^{3})(2)}{t} = \frac{276r10^{6}}{25}$$

$$\frac{f}{t} = 0.001 \text{ m} = 1 \text{ mm}, \text{F}$$

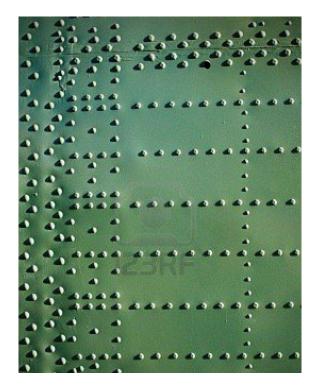


$$T_{rivet} A_{rivet} = \forall_{h} A_{h}. \qquad T_{h} = 110.4 \text{ MPa.}.$$

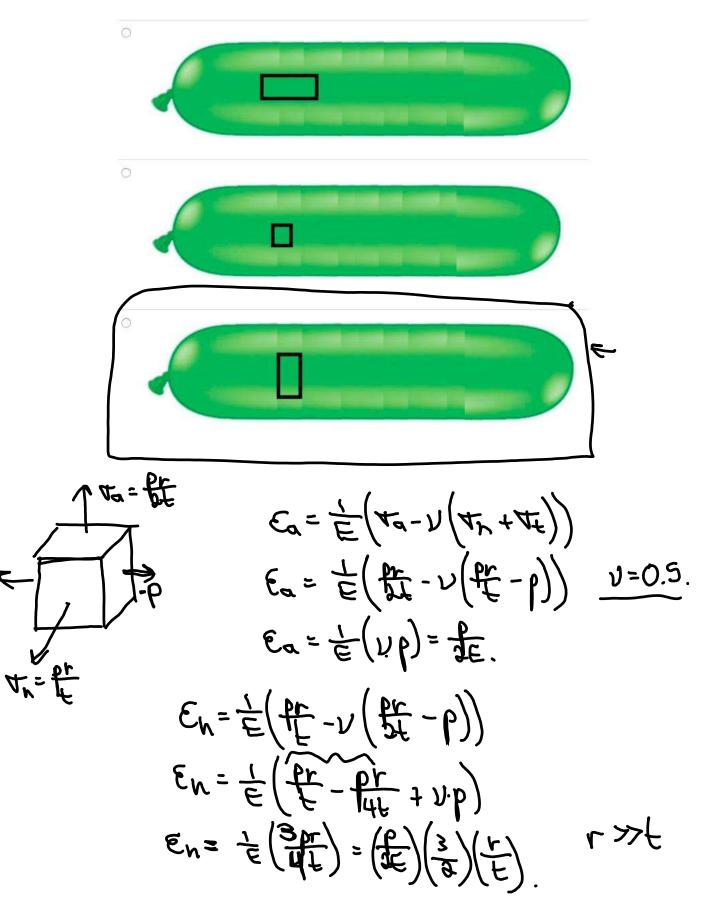
$$\left(\frac{T_{s}}{J.s}\right) \pi r^{2} = \forall_{h} (0.001) (L)$$

$$L = 0.0037 m = 2.7 mm.$$

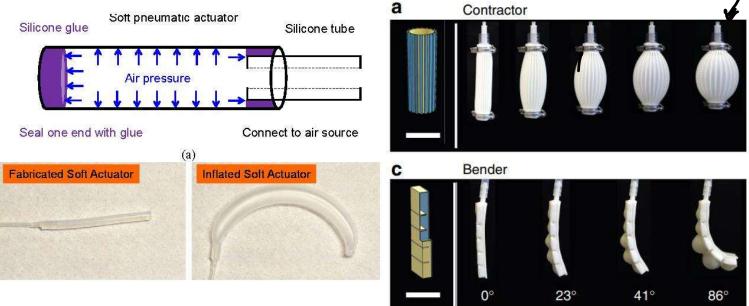
Example rivet pattern for airplane fuselage.



A square was drawn on a cylindrical balloon before inflating it. The balloon was then inflated. Which one is the correct shape resulting from the original square after inflation?



Pneumatic Actuators



Jin Guo et al, IEEE ICMA, 2017

Schaffner et al, Nat Comm, 9:878, 2018.

1. Starting from the equations for stresses in chambers and the generalized strain equation, derive the relationships for the strain in the axial and hoop directions in a pressure vessel.

2. For an elastomer with a Poisson's ratio of 0.5, what is the strain in the axial and radial directions as a function of pressure?

3. How could you modify the materials properties or device structure ot improve the actuation strain and/or actuation stress in the axial direction?