Summary: failure analysis (what the whole course of ME 323 leads up to...)

COMBINED loading : axial, torsion and bending UNIAXIAL tensile loading
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13. Transformation of stresses and Mohr’s Circle

Objectives:
To study the projection of a given state of plane stress at a point onto an arbitrarily-
aligned stress element.

Background:

e [f the stresses acting on a stress element all act in a single plane in the structural
component, then the component is said to be in a state of “plane stress”. For
example, if 0. =7,. =7,. =0, then the only non-zero stresses lie in the xy-plane

and the component i1s in a state of plane stress in the xy-plane.

stress element in
plane stress

® Sign conventions: Suppose we have an arbitrary face of a stress element that 1s
originally oriented in such a way that its normal “n” is aligned with the positive
x-axis. If this element is rotated CCW through an angle 6 from the positive x-

axis, the positive f-axis for this face is then defined by the right-hand-rule: “z
crossed into n gives ¢”. Positive normal stresses on face n, o, , points outward

from face n. Positive shear stress, T _,, acts in the +t direction on the n-axis face.

nt?

BEFORE rotation AFTER rotation




Lecture topics:
a) Simple examples of plane stress.
b) Stress transformation equations for plane stress.
c) Principal normal stresses and maximum shear stress.
d) Mohr’s circle.

e) Absolute maximum shear stress for plane stress.
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Lecture notes

a) Simple examples of plane stress
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b) Stress transformation for plane stress
Here we start with a state of plane stress with normal stresses ¢, and o, acting on

faces perpendicular to the x- and y-axes, respectively, and shear stress 7., acting on the

xy
four faces. Our goal here is to determine the normal and shear components of stress

acting on a face, QR, whose normal “»” is at an angle of 8 measured CCW from the x-
axis, as indicated in the figure below.

[Let AA be the area of the cut face QR. Therefore, the area of faces PQ and PS are
AAcosf and A Asin@, respectively.
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At this point, we will perform an equilibrium analysis of the cut section PQR (left side
of the cut) to determine the stress components ¢, and 7,

i

y 0
7,,AAsinf

Summing forces in the n-direction on the cut section gives:

Zi’l =0,AA (0 AAcosB)cosO - (‘L’A.__‘,AA cos Q)Sine
- (G),AA sinB) sin@ — (T.WAA sin 6)0059
0= (Gn -, cos” 6 — o, sin” 6 — 27, cosBsinG)AA

o, =2£cosz9+G‘;sin26+21'xycos€sin9 (1)

e o— O

Similarly, summing forces in the t-direction on the cut section gives:
Z F=1,AA+ O' (AAcos 9) sinf — (TVH.AA cos B)COS 7
e (G\,AA sin 9) cosf + (’L'V,H,AA sin 9) sin@

0= |:1'm + (crx — G_‘,)cosesine — Ty (cos2 6 —sin’ 9)]&4 =»

Tt :—(ox—G),)cosﬂsin(?—rn(cosz9—sin2 9) (2)

Equations (1) and (2) provide us with equations for determining two of the three
components of stress, o, and 7,,, on the rotated stress element. The remaining state of

stress o, , can be found from equation (1) by substituting 8+90° in for 8 (since the
” face of the stress element is a 90° CCW rotation from the “n” face); that is,
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o,=0, cos’ (0+90°)+ o, sin? (6+90°)+ 21, cos(6+90°)sin (6 +90°)

=0, sin29+0’y 00529—21'_“, cosfsin@ (3)

With the use of some trigonometric identities', equations (1) and (2) can be written in a
slightly modified form, a form that we will find useful later on in interpreting the results
of stress transfegarations:

N av

c.+0, o,—0, ,
o,= = [+ — |cos20+7,,sin20 (1a)
- 2 2
T~ |,
Ty =— = [sin26+7,, cos20 (2a)
-— 2

' Here, we use the trig identities: sin26 = 2sin6cos@, cos” @ =(1+cos26)/2 and
sin® @ = (1—cos26)/2.
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¢) Principal normal stresses and maximum shear stress
Equations (1a) and (2a) show how the normal and shear stresses on the n-axis face of a
2D stress element varies with the rotation angle @ of the stress element:

g,—0,
c, =om,e+(%]C0529+T”Sm2§ (la)
o,—0,
P —[%Jsin29+rx}, c0s20 (2a)
where:
Oy +05

&

O-ave = 2
The question 1ot us 1n this section is to determine the maximum and minimum values of

these normal and shear stress components as the stress element 1s rotated. The maximum
and minimum values of the normal stress are known as the “principal” stresses.

Principal stresses@—
To determine the rotations that correspond to the principal stresses we need to set
do,

do

=0 and solve for the rotation angle. To this end, we write from equation (1a):

e We see that there are two values of 26, (26, and 26p, ) separated by 180° that
satisfy equation (5): 20p, =28p; £180°, or:

e Substitution of these two angles back into equation (1a) gives the two values for
the principal stresses, op; and op,. For given numerical values for the stress
state, this process of calculating principal stresses is straightforward. However,
we desire to develop general expressions for these principal stresses. To this end,
consider a right triangle having 7,, and (cr_x —O'},)/ 2 as opposite and adjacent

sides, respectively, for the angle 26p, shown below left:

a

T
1 - ~(e,-0,)2 20p>

(cl.—c.“)fz
— -

R
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From this figure we see that:

rx‘/’
sin26,, (6)
\—. R

c,—0,)/2
coszgplzu (7)
——

2

i /4] Substituting (6) and (7) into equation (1a) gives:

where R:\/’Ef}.+ 0' e
- —

—

\ ( TX\
0- O-HVE' + T_IT R G{IVE + R (8)
For the triangle corresponding to the angle 65, we have:
_ Tox
sin 29[)2 = ? (63.)
(ox - O'v) f2
0526, —— (7a)
Substituting (6a) and (7a) into equation (la) gives:
c,—0, (O'X—O'_\,)/2 T
O p2 = Ogpe _[ - ) : J R - Tx_v % =0 ave _5 (9)

e [f we substitute either (6) and (7), or (6a) and (7a), into equation (2a) we see that:
Tt (91’1) nt(9P2)=0 (]0)

In summary:

a) The two “principal” stress components o p; and o p, are given by:
Op| = e — ¥ s

(iV
b) These stress states occur on faces whose rotations are separated by 90° :
9‘02 = 9])] + 900

c) Equation (10) shows that the shear stress on the faces corresponding to principal
stresses 1s ZERO.

stress element orientation
showing principal stresses
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Maximum in-plane shear stress

To determine the rotations that correspond to the maximum shear stress in the plane we

Tt

need to set

equation (1b):
dty __,[9:=0,
de 2

sin29k\. _ _(o-x _O-y)/z

tan20, = =
" cos26; T

xy

=

6, =—tan | —

=0 and solve for the rotation angle. To this end, we write from

- Jcos 20-27,,5in120=0 =

(ax—a},)lz

2 Ty

L tan™ (11)

Using a procedure similar to that above for principal stresses (and detailed in the
textbook), we can show that there are two orientations 90° apart producing maximum

shear stresses of’

TA‘],.\'Z = iR]

2
where, as before, R=J72 +(0'_r—0'_\,) /4 .

Xy

In summary:

a) The two maximum shear stress values 7, and 7, are given by:

Tsl,sl =1R

b) These stress states occur on faces whose rotations are separated by 90° :

9‘\.2 = 93‘] i 900

These orientations are 45° rotations from the principal stress axes.

c) The normal stress on the faces corresponding to maximum shear stress is NOT

zero, rather they are given by: o,(8,;)=0,(0,,)=0

c —(crx+o_\.)/2.

ave —

avg » Where, as before,

principal axis

Opa

stress element orientation
showing principal axes

principal axis

y max. shear axis

principal axis

g

Tmax

Gﬂl‘g

stress element orientation
showing axes of max.
shear stress
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d) Mohr’s circle: visualizing the stress transformation

As seen 1n equations (1a) and (2a), for a given state of plane stress ata pont (o, 0,
T,,), we have the following stress transformation equations:

o,—0,
= [%J c0s260 +7,,sin26

o,-0, 3('
T =_(¥]Sin29+rwcos29 /& 5
2 i | ‘K
0-” Tm' O',

where 0, =(0,+0,)/2.

Suppose we take the square of both sides of the above two equations and add together
the results:

c,—0 '
A W W 2 ,
GX _O-\r 3 r
L sin26 +7,,cos 20
2
c,—0,
- [—x 5 Y J (0032 26 +sin’ 29)+ T_Ey (sin2 26+ cos’ 29)

2
=y 2 2
=( > ] +75, =R

The above shows us that if the results of the stress
transformation equations (1a) and (2a) are plotted in the
(o,7) space, the result is a circle:

e whose center is located at (O'aw_, ,0) , where

Gm,e=(0'x+cry)/2,and

2
2 £ O-x - 6\: 2
e whoseradiusis R= — +0

as shown 1in the figure to the right. This representation 1s Cpr B i Op
known as “Mohr’s circle” for a given state of plane T
stress, (0' ,0..T ) :
S o.+0,
o-a‘l't’ = *
- 2
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Stress (MPa)

What can we learn from Mohr’s circle?

a) The principal stresses, op; and o p, , are given by:
Op1 =04t R
Op2=O0qpe— R
b) The principal stresses occur at stress element orientations at which the shear
stress 1s zero, T=0.

¢) The maximum shear stress 1s given by:
=R

Tmax

d) The maximum shear stress occurs at stress element orientations at which the
normal stress 1s ¢ =0, .

These are all things that we discovered from analysis earlier when considering principal
stresses and maximum shear stress. The Mohr’s circle simply allows us to visualize
these results and will help us to remember these important relations.

304 — o0,
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Using Mohr’s circle to locate planes of principal stresses and in-plane maximum shear
stress

Up to this point we have seen that Mohr’s circle in the ¢ —17 plane provides us with
information on the description of the state of plane stress: the stress states lie on a circle

of radius R=\/’ri‘,+(ox—o",)2/4 and centered on (6,1’)=(GW,,0), where

i [~ =(0‘x+0'\.)/2, and where o, o,and 7,, arc thc two normal components of

stress and shear component of stress, respectively, corresponding to a set of x-y
coordinate axes. *

“—

What we have not done at this point is discussed how to relate a transformed stress state
through a rotation angle of @ to its location on the Mohr’s circle in the ¢ —7 plane.

Before attempting this, let’s review a couple points related to what we already know
about stress states and Mohr’s circle.

e Direction of positive shear stress in Mohr’s circle. We have defined a positive
shear stress on the x-face of the stress cube as being in the positive y-direction.
Once we rotate this stress cube, this notation is equivalently stated as being
positive in the n-face pointing in the t-direction. We will continue that here.
However, here we will point the positive 7 direction DOWNWARD in the
o — 7 plane when constructing our Mohr’s circle diagram. The reasoning behind
this somewhat odd choice of positive direction is to maintain an equivalence in
the direction of rotation of the element in the physical space with the direction of
rotation (e.g., to insure that a CCW rotation in the physical space corresponds to
a CCW rotation in Mohr’s circle plane).
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e Angle of rotation vs. angle in the ¢ —7 plane. Note that the stress transformation
equations are all written in terms of the angle 26 , where 6 is the physical angle
of rotation in the x-y plane:

0 = Ogye

a,—~0, )
+ T cos20+17,,sin26

O-t_o-v .
T=—| —— [sin20 + 7., cos20
5] XYy

As a result, a physical angle of rotation of € corresponds to an angle of rotation
of 26 in the ¢ —7 plane.

Both of these are demonstrated in the following figure. This figure contains much
detailed information concerning the construction of Mohr’s circle and the relationship of
rotations in the physical x —y plane to rotations in the ¢ — 7 plane. In addition, we can

readily see the locations of the principal stresses and maximum in-plane shear stress.
Study this figure, and then move onto the next page where we have listed a series of
steps that are convenient for constructing Mohr’s circle from a state of stress

(00 Ty ).

negative T 0. =6 +45°

T

may

rotation for
max. shear stress
~Tinax

sy

a,

ave

20,
Ty P

THI[L‘»’

positive T
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Construction of Mohr’s circle for a general state of plane stress
For a given state of stress (o, 0, 7,,) fora pont:
1) Establish a set of 6-1 axes (be sure to use the same scale on each axis)::
® +G points to right
® +T points down
2) Calculate the two parameters that define the location and size of Mohr’s circle:
&+

ave

y

Q

= average normal stress

ave’

3) Draw a circle in the o —7 plane with its center C at (0‘,7:) = (0' 0) and having

a radius of R.

4) Show the point X given by the coordinates (GJ):(O}’TW)O“ the Mohr’s

circle. Line OX is the x-axis. (Note that the y-axis is at a 180° from the x-axis in
the 0 —7 plane.)

5) The components of stress on the face of a stress element rotated through an angle
of @ corresponds to a point N on Mohr’s circle found through a rotation of 26
on the circle.

6) The angle from the x-axis to the o —axis in the Mohr’s circle plane i1s 26,
where 6, the rotation angle for the stress element that produces the largest
principal stress o p, . It is readily seen from the figure that the principal stresses

are given by: 0 p py, =0, T R.

Tinax
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Alternate (graphical) construction of Mohr’s circle for a general state of plane

stress

For a given state of stress (o, o, 7,,) for a point:

1)

2)

3)

4)

5)

6)

7)

Establish a set of 6-T axes (be sure to use the same scale on each axis):
® +¢ points to right
® +1T points down

Locate points X and Y at locations (ax,r ) and (cr y,—rﬁ) on your set of axes.

ol Y

Connect points X and Y with a straight line, and locate the center of the Mohr’s
circle at location C where this line crosses the o —axis . This intersection occurs

at (G m_e,()). Note that the x- and y-axes correspond to lines CX and CY,

respectively.

Draw a circle with its center at (0' m,e,O) and passing through points X and Y.

: : - Gx" 9y 2
Calculate the radius of the circle using R = T i P

The components of stress on the face of a stress element rotated through an angle
of @ corresponds to a point N on Mohr’s circle found through a rotation of 26
on the circle.

The angle from the x-axis to the o—axis in the Mohr’s circle plane is 26, ,
where 6, the rotation angle for the stress element that produces the largest

principal stress © ;. It is readily seen from the figure that the principal stresses

ave

are given by: 0 p, p, =0, 1 R.

T,

nmax
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Example 13.2

For the given state of stress shown, determine the principal stresses, the maximum in-
plane shear stress and the stress element rotation angles corresponding to these stresses.

—

’ y

2 ksi
8 ksi
L \
10 ksi x

Vouq "_'_Oig,: Y st “/'t .ﬁz‘
R: JQ_%-Q,Y,, g = 10k
o = -9410: blost X (v *\5

Yo © -y-10 * ~\'-| ks: X:(.‘o)s>
¥+ (v r\»@

T 3w as:
1‘ s k& \0 h.s

Yoy, * 190-36,= 180-so0'(E)
On s 343" CCW
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Example 13.1

Consider the state of plane stress shown below. Determine the stresses on the plane
shown below whose orientation is a 40° CCW rotation from the x-axis.

} y
OOO psi

3000 psi

3000 psi

‘;“z a 2000-200¢ . ”\m‘s
b JQegyy g =30%0p
X* (3000, 'M)

Q-ON = tan-! (%‘5 * 363",

104> 180-90 - 367 = (343",

osdaes O b0 1 = D0
Yo = - 3360 ~1000 > -3 ps.

DN

3N IOp @ ls__ T’x: -l-\l(wr,;
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