Lecture 33 Hotseat

For a state of <u>hydrostatic</u> stress, what is the relationship between the max in-plane shear stress and the absolute maximum shear stress?

$$\begin{array}{l} \chi \quad \tau_{max,in-plane} > \tau_{max,abs} \\ \rightarrow \quad \tau_{max,in-plane} = \tau_{max,abs} \\ \rightarrow \quad \overline{\tau_{max,in-plane}} < \overline{\tau_{max,abs}} \\ R = 0 \end{array}$$

J L

stress element in plane stress

stress element in rotated to orientation for principal stresses

Example 13.6 J

Determine the principal stresses and the absolute maximum shear stress for the plane stress element shown.

Example 13.8

The Mohr's circle for a stress state is presented above.

a Show the locations of the y-axis in the Mohr's circle above.

- by Determine the principal stresses and the absolute maximum shear stress for this state.
- c) Determine the values for $\underline{\sigma}_x, \underline{\sigma}_y$ and $\underline{\tau}_{xy}$ of this stress state.

b)
$$\forall n = \tau_{avg} + R = 30 + 30 = 50 \text{ MA}$$

 $\forall r_2 = \tau_{avg} - R = 30 - 30 = 10 \text{ MBa}.$
 $T_{mar, dbx} = \frac{\nabla n}{2} = 25 \text{ MBa}.$
c) $c_{05}(20) = \frac{(\forall \overline{avg} - \eta_X)}{R}$
 $\forall x = \forall avg - Rcos(60^{\circ}) = 20 \text{ MBa}.$
 $\forall y = 2 \forall \overline{avg} - \overline{t_X} = 40 \text{ MBa}.$
 $\forall y = \sqrt{\tau_{avg}} + Rcos(60^{\circ})$
 $T_{xy} = -R = n(60^{\circ}) = -20(\frac{\sqrt{5}}{2})$
 $T_{xy} = -R = n(60^{\circ}) = -20(\frac{\sqrt{5}}{2})$

Example 13.9

Consider the loaded pulley bracket shown below.

- a) Determine $\sigma_{x'}$, $\sigma_{y'}$ and $\tau_{x'y'}$ corresponding to $\theta = 20^{\circ}$.
- b) Determine the principal stresses and maximum in-plane shear stress, along with the corresponding rotation angles.

Stress transformations and Mohr's circle

Example 13.7

A state of plane stress is given by: $\sigma_x = 12 \text{ ksi}$, $\sigma_y = 12 \text{ ksi}$ and $\tau_{xy} = 4 \text{ ksi}$. Determine the principal stresses and the absolute maximum shear stress for this state of stress.

Lecture 33 Quiz: Practice with Mohr's Circles

- a) Draw the Mohr's circle.
- b) Determine the principal stresses.
- c) Determine the in-plane maximum shear stress.
- d) Determine the absolute maximum shear stress.
- e) Relative to the defined x-y axis, at what angle is the first principal stress?

Printing Along Principal Stress Lines

Case	SLAM-XY	SLAM-XZ	Grid-XY
Predicted normalized yield load and displacement	2495.1 N/N at 0.79 mm		2250.1 N/N at 5.12 mm
Average normalized yield load and displacement	2537.7 N/N at 2.26 mm	541.6 N/N at 0.64 mm	1783.0 N/N at 2.93 mm
Average normalized ultimate load and displacement	2847.8 N/N at 2.92 mm	810.9 N/N at 2.46 mm	2799.9 N/N at 7.54 mm
Average elastic stiffness normalized by specimen mass	1111.8 (N/N)/mm	836.4 (N/N)/mm	601.6 (N/N)/mm
Failure mode description	Simultaneous gross section failures (tension) at concentrated location	Delamination between layers (tension) along Y axis, progressive failure at multiple locations	Gross section (tension), multiple locations
Failure type	Brittle	Ductile	Brittle
		Committee of the	

Failure profiles Global geometry Member view

Tam and Mueller, 3D Printing and Additive Manufacturing, "Additive Manufacturing Along Principal Stress Lines", 2017.

Computational Wrapping

Lee et al, Sci. Adv., "Computational wrapping: A universal method to wrap 3D-curved surfaces with nonstretchable materials for conformal devices", 6:eaax6212, 2020.

Course Roadmap

Ch 13: Mohr's Circles

- Given the loading conditions at a point, what are the stress states at different angles?
- At what angle does the max normal stress and max shear stress occur?

Ch 14: Combined Loading

- What are the normal and shear stresses at points on a cross section due to combined axial, torsion, and bending loading?
- Determine the principal stresses and max shear stress
 at these points
 a Mobr's sireles
- at these points use Mohr's circles.

Ch 15: Failure Analysis

 Given the stress states at a point, under what condition will a 3D structure fail?

14. Stresses due to combined loadings

Objectives:

To study the combined effects of axial, torsion and bending loads on the principal and maximum shear components of stress at a point.

Background:

For each of the following three loading situations, consider the i) internal loading; ii) stress distribution; and , iii) the corresponding stress element.

TRANSVERSE LOADING (e.g., rectangular cross section)

anna.

Combined Loading

For combined loads, <u>use superposition</u> (possible because of the assumption of linearity).

Topic 14: 5

Z

x

Т

У

