Combined Loading in Windmills

Why does a windmill have 3 blades?

Combined Loading in Windmills

The rotor assembly weighs ~8 000 kg . A distributed force of $300 \mathrm{~N} / \mathrm{m}$ acts over the blades, which are each 60 m long.
Find the stresses at the interface between the hub and the nacelle.

$$
\begin{aligned}
& \sum F=-F_{x} \hat{\imath}-F_{y} \hat{\jmath}-F_{2} \hat{k}+P \hat{\imath}+0.4 P_{\hat{\imath}}-m_{y} \hat{\jmath}=0 \\
& F_{x}=1.4 p \\
& F_{y}=-m g \\
& F_{z}=0 \\
& \Sigma M=-M_{x} \hat{\imath}-M_{y} \hat{\jmath}-M_{z} \hat{k}+\vec{r}_{1} \times \vec{F}_{1}+\vec{r}_{2} \times \vec{F}_{2}=0 \\
& \vec{r}_{i}(1,30,0) \quad \vec{F}_{1}=(P, 0,0) \\
& \vec{r}_{2}=(I,-30,0) \quad \vec{F}_{\theta}=(0.4 P, 0,0) . \\
& \vec{r}_{1} \times \vec{F}_{1}=(0,0,-30 P) \\
& \vec{r}_{2} \times \vec{F}_{2}=(0,0,12 P)
\end{aligned}
$$

$$
\begin{gathered}
0=-M_{x} \hat{\imath}-M_{y} \hat{\jmath}-M_{z} \hat{k}+12 P \hat{k}-30 P \hat{p} \\
M_{x}=0 \quad M_{y}=0 \\
M_{z}=-18 P \\
P=(300 \mathrm{~N} / \mathrm{m})(60 \mathrm{~m})=18000 \mathrm{~N} \\
M_{z}=-18(18000)=-324000 \mathrm{~N} \cdot \mathrm{~m}
\end{gathered}
$$

Windmills

a

b

$$
\tau=\frac{2(8000)(q .81)}{0.15 \mathrm{~m}^{2}}=1.045 \mu \mathrm{~Pa} .
$$

$$
A=\pi\left(r_{0}^{2}-r_{i}^{2}\right)=0.15 m_{1}^{2}
$$

$$
\begin{aligned}
& \frac{M_{y}}{77}=9.586 \mathrm{MPd} . \\
& d: 9.75 \mathrm{MPa} . \\
& c:-9.9 \mathrm{MPa} .
\end{aligned}
$$

The wind applies a distributed load of $300 \mathrm{~N} / \mathrm{m}$ on each of three blades that are $\underline{60} \mathrm{~m}$ long. The rotor assembly and nacelle together weigh $\sim 74000 \mathrm{~kg}$. The shaft of the windmill is 2 m in diameter at the base and is made of steel that has a thickness of 0.1 m . The weight of the shaft can be neglected compared to the weight of the rotor assembly and nacelle.

Find the state of stress at point \mathbf{a} and point \mathbf{b} at the bottom of the shaft. Draw the 3D stress element for the loading conditions.

Windmills

a
b

