Review for Final Exam

Zhao Section 2024.4.22

- Students must exhibit highest standard of honor. Any misconduct of academic integrity will be addressed.
- The exam is <u>closed-book and closed-notes</u>. There will be three full-length problems and one multiple-choice problem with multiple parts.
- <u>Equation Sheet</u> is posted on course blog and will be handed out in the exam.
- <u>Calculator</u>: please bring the allowed type of calculator as described in syllabus: TI-30X and TI-36X models, fx-115 and fx-991 models.
- Exam Date & Time: May 2, 2024. Time: 7:00 9:00 PM
- Final exam will be comprehensive, with a major focus on the materials after exam 2.
- Exam Room: PHYS114.
- Please arrive to exam room <u>at least 15 minutes prior</u> to the start of exam.
- Exam Submission Window (30 Minutes): When you complete your exam, you may use your phone to scan your solution and upload to Gradescope. Specifically, your solutions will be scanned and submitted to Gradescope session "ME 323 Spring 2024 Exams". You are responsible for scanning your exam into a single PDF and uploading your exam into Gradescope immediately after completion of your exam. To accommodate the time needed to do this, the deadline to have your exam scanned and uploaded to Gradescope will be 9:30PM (EST), giving 30 minutes to complete this process. The time limit will be strictly enforced.
- Assigning Pages for Your Exam: As part of the submission process, you will need to identify the page numbers for Problem 1, 2, ... separately. If you need extra papers, please use your own but make sure to arrange the pages in the correct order in your submission. Do not submit the equation sheet.

Coverage: Comprehensive

20 M	25 Mar	Thin welled processes used and hear stranges	Chap 12	
29 M	23-Mar	rinn-waned pressure vessels – axial and noop stresses	Chap. 12	
30 W	27-Mar	Stress transformation – principal /maximum shear stresses	Chap. 13	
32 F	29-Mar	Stress transformation – Mohr's circle	Chap. 13	HW 9
33 M	1-Apr	Review		
W	3-Apr	Examination 2, 8-10pm: no lecture on Wednesday		
33 F	5-Apr	Stress transformation – absolute maximum shear stress	Chap. 13	
34 M	8-Apr	Stresses – combined loading	Chap. 14	
35 W	10-Apr	Stresses – combined loading	Chap. 14	
36 F	12-Apr	Stresses – combined loading	Chap. 14	HW 10
37 M	15-Apr	Failure analysis – stress theories	Chap. 15	
38 W	17-Apr	Failure analysis – stress theories	Chap. 15	
39 F	19-Apr	Failure analysis – buckling of columns	Chap. 18	HW 11
40 M	22-Apr	Practice with combined loadings and failure analysis		
41 W	24-Apr	Practice with combined loadings and failure analysis		
42 F	26-Apr	Review		
	TBA	Final Examination		

Thin wall pressure vessels

Spherical pressure vessel

 $\sigma_s = \frac{pr}{2t}$

Mohr's circle?

Mohr's circle?

Stress transformation & Mohr's circle

3-dimensional:

- σ_1 is the *largest* of the three
- σ_3 is the *smallest* of the three
- σ_2 is the *intermediate* of the three

 $(\tau_{\max})_{abs} = \frac{\sigma_{\max} - c}{2}$

Combined loads

Problem X (XX points): A drill jammed in the wall is acted upon by a point load at D, and a torque at B, as shown in the figure below. For the given state of loading,

- a) Determine the stress state at the point M on the cross section aa', and represent the stress state on an appropriate stress element.
- b) Determine the stress state at the point N on the cross section aa', and represent the stress state on an appropriate stress element.
- c) Using a Mohr's circle, determine the absolute maximum shear stress \u03c8_{max,abs} for the points M and N.

	М	Ν
$F_x = -200\cos 30^\circ$	$\sigma_x = \frac{F_A}{A} = -0.25 MPa$	$\sigma_x = \frac{F_x}{A} = -0.25 \ MPa$
$F_y = 200 \sin 30^\circ$	$\tau = 0 \# (free surface)$	$\tau_{xy} = \frac{4F_y}{3A} = 0.19 MPa$
$F_z = 0$	0	0
$M_{x,A} = -30000 Nmm$	$\tau_{xz} = \frac{16M_{x,A}}{\pi d^3} = -5.66 MPa$	$\tau_{xy} = -\frac{16M_{x,A}}{\pi d^3} = 5.66 MPa$
$M_{y,A} = 0$	0	0
$M_{z,A} = 4019.24 Nmm$	$\sigma_x = -\frac{32M_{z,A}}{\pi d^3} = -1.52 MPa$	$\sigma_x = 0$ #(neutral plane)

c) For element M:

For element N:

$$\begin{split} \sigma_{avg} &= \frac{\sigma_x + \sigma_z}{2} = -0.89 \text{ MPa}; \quad R = \sqrt{\left(\sigma_x - \sigma_{avg}\right)^2 + \tau_{xz}^2} = 5.73 \text{ MPa} \\ \sigma_{p1} &= \sigma_{avg} + R = 4.84 \text{ MPa} (= \sigma_{max}) \\ \sigma_{p2} &= \sigma_{avg} - R = -6.62 \text{ MPa} (= \sigma_{min}) \\ &\therefore \tau_{max,abs} = R = 5.73 \text{ MPa} \end{split}$$

Failure theories

Ductile materials

Maximum shear stress failure theory

$$\tau_{max,abs} = \frac{\sigma_Y}{2}$$
$$\tau_{max,abs} = \frac{\sigma_1 - \sigma_3}{2}$$

Maximum distortional energy failure theory

$$\sigma_{Y} = \sigma_{M}$$

$$\sigma_{M} = \frac{\sqrt{2}}{2} \sqrt{(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{1} - \sigma_{3})^{2} + (\sigma_{2} - \sigma_{3})^{2}}$$

Brittle materials

Maximum normal stress failure theory

$$\left|\sigma_{1}\right| = \sigma_{U} \quad \text{OR} \quad \left|\sigma_{3}\right| = \sigma_{U}$$

Mohr's failure theory

$$\sigma_{\max} = \sigma_{TU} \quad OR \quad \sigma_{\min} = -\sigma_{CU}.$$

$$\frac{\sigma_{P1}}{\sigma_{UT}} = \frac{\sigma_{P2}}{\sigma_{UC}} + 1.$$

Buckling of columns

Euler buckling

$$P_{cr} = \pi^2 \frac{EI}{L_{eff}^2}$$

