ME 323: Mechanics of Materials
Summer 2024

Homework Set H02
Assigned/Due: June 11/June12

In the truss shown below, all members have square cross sections, with BC and BD having crosssectional dimensions of $b \times b$, and CD and DH having cross-sectional dimensions of $2 b \times 2 b$. All members are made up of a material having a Young's modulus of E and a Poisson's ratio of v. A vertical force P is applied to joint C of the truss. As a result of this applied load:
a) Determine the stress in each of the four members. State whether each member is in tension or compression.
b) Determine the elongation of member DH .
c) Evaluate your answer in b) using the following: $E=30 \times 10^{6} \mathrm{psi}, v=0.3, b=1 \mathrm{in}$, $L=12$ in and $P=20 \mathrm{kips}$.

(a)

Method of joints

$$
\begin{aligned}
& C: \sum F_{y}=F_{c o s} \sin \theta-P=0 \\
& G F_{C D}=\frac{P}{\sin \theta}=\frac{2}{\sqrt{3}} p(T) \\
& \Sigma F_{x}=F_{\cos }+F_{0} \cos \theta=0 \\
& C F_{8 B}=-\left(\frac{P}{\sin \theta}\right) \cos \theta \\
&=-\left(\frac{1 / 2}{\sqrt{3} / 2}\right) P \\
&=-\frac{1}{\sqrt{3}} P \text { (c) }
\end{aligned}
$$

D: $\Sigma F_{y}=-F_{0} \sin \theta-F_{0 \theta} \sin \theta=0$

$$
\angle F_{D B}=-F_{O D}=-\frac{2}{\sqrt{3}} P(C)
$$

$$
\Sigma F_{x}=-F_{0} \cos \theta+F_{x B} \cos \theta+F_{\cos }=0 .
$$

$$
\Leftrightarrow \quad F_{D_{4}}=\left(F_{0}-F_{\text {DB }}\right) \cos \theta=2\left(\frac{2}{\sqrt{3}} P\right) \frac{1}{2}=\frac{2}{\sqrt{3}} P(T)
$$

$$
\begin{aligned}
& \therefore \quad \sigma_{C D}=\frac{F_{C D}}{(2 b)^{2}}=\frac{1}{2 \sqrt{3}} \frac{P}{b^{2}}(T) \\
& \sigma_{C B}=\frac{F_{C B}}{b^{2}}=-\frac{1}{\sqrt{3}} \frac{P}{b^{2}}(C) \\
& \sigma_{D B}=\frac{F_{O B}}{b^{2}}=-\frac{2}{\sqrt{3}} \frac{P}{b^{2}}(c) \\
& \sigma_{D H}=\frac{F_{D H}}{(2 b)^{2}}=\frac{1}{2 \sqrt{3}} \frac{P}{b^{2}}(T)
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } e_{D H}=\varepsilon_{D H} L_{D H}=\frac{\sigma_{D H}}{E} L_{D H}=\frac{1}{2 \sqrt{3}} \frac{P L}{E 6^{2}} \\
& \text { c) } e_{D H}=\frac{1}{2 \sqrt{3}} \frac{\left(20 \times 10^{3} 1 b\right)(12 \text { in })}{\left(30 \times 10^{6} \frac{16}{i^{2}}\right)(1)^{2}}=\frac{4}{\sqrt{3}} \times 10^{-3} \mathrm{in}
\end{aligned}
$$

