ME 323: Mechanics of Materials
Summer 2024

Homework Set H03
Assigned/Due: June 12/June 14

The frame shown is made up of members DH and BD . Member BD supports a block of weight W at its midpoint C . Member DH has a cross-sectional area of A and is made up of two pieces that are spliced together as shown in the figure at an angle of $\theta=30^{\circ}$. All pins in the frame have a diameter of d. All pin connections are single-sided. Consider the weights of the members to be negligible compared to the weight of the block.
a) Determine the axial stress in member DH of the frame.
b) Determine the shear stress in pins B and D of the frame.
c) Determine the normal (n) and tangential (t) components of stress along the splice joint in member DH.
a) Individual Fens of DH and BD, as shown.
Equilibrium:

$$
\begin{aligned}
& \cdot \sum M_{B}=-(W \cos \phi) \frac{L}{2}+\left(F_{0 H} \sin \phi\right) L \\
&=0 \\
& L_{\rightarrow} F_{D H}=\frac{W}{2} \cot \phi=\frac{2}{3} W
\end{aligned}
$$

$$
\text { - } \sum F_{x}=B_{x}-F_{\text {OHM }}=0 \Rightarrow B_{x}=F_{D H}
$$

$$
=\frac{2}{3} w
$$

- $\sum F_{y}=B_{y}-W=0 \Rightarrow B_{y}=W$

$$
\sigma_{D H}=\frac{F_{D H}}{A}=\frac{2 W}{3 A}
$$

b) Shear stress in pin D :

$$
\Sigma_{0}=\frac{F_{0}}{\pi(d / 2)^{2}}=\frac{8 W}{3 \pi d^{2}}
$$

Shear stress in pin B :

$$
\tau_{B}=\frac{\sqrt{B x^{2}+B_{1}^{2}}}{\pi(d / 2)^{2}}=\frac{\sqrt{\left(\frac{2}{3} W\right)^{2}+W^{2}}}{\pi d^{2} / 4}=\frac{4 \sqrt{13}}{3} \frac{W}{\pi \alpha^{2}}
$$

C)

$$
\begin{aligned}
\sigma & =\frac{F_{O H} \sin \theta}{A / \sin \theta} \\
& =\frac{\left(\frac{2 W}{3}\right)}{A} \sin ^{2} \theta \\
& =\frac{8}{3} \frac{W}{A} \\
\tau & =\frac{F_{01} \cos \theta}{A / \sin \theta} \\
& =\frac{\left(\frac{2 W}{3}\right)}{A} \cos \theta \sin \theta \\
& =\frac{1}{2 \sqrt{3}} \frac{W}{A}
\end{aligned}
$$

FOHCOS θ

