ME 323: Mechanics of Materials
Summer 2024

Solution
Homework Set H06
Assigned/Due: June 17/June 19

A rod is made up of elements (1), (2), (3) and (4), with each element having a length of L, and the elements have outer diameters of d_{1}, d_{2}, d_{3} and d_{4}, respectively. Element (2) is a core inside the tube element (3), as shown in the figure, and elements (1), (2)/(3) and (4) are connected in series. The elements have Young's moduli of: $E_{1}=E_{2}=E$ and $E_{3}=E_{4}=2 E . \mathrm{C}$, D and H represent rigid connectors for the rod elements. Loads of $2 P, P$ and $3 P$ act on connectors C, D and H , in directions shown on the figure below.
a) Determine the displacement of connector H .
b) Determine the stress in each element of the rod.

1. Equilibrium

(1) $C: \sum F_{x}=2 P+F_{2}+F_{3}-F_{1}=0$
(2) $D: \sum X_{x}=-P-F_{2}-F_{3}+F_{7}=0$
(3) $H: \sum F_{x}=3 P-F_{4}=0$
2. Load/Deformation
(4) $e_{1}=\frac{E_{1} L_{1}}{E_{1} A_{1}}=\frac{F_{1} L}{E \pi(d / 2)^{2}}=\frac{4 F_{1} L}{\pi E d^{2}}$
(5) $e_{2}=\frac{E_{2} L_{2}}{E_{2} A_{2}}=\frac{F_{2} L}{E \pi(d / 2)^{2}}=\frac{4 F_{2} L}{\pi E d^{2}}$
(6) $e_{3}=\frac{F_{3} L_{3}}{E_{3} A_{3}}=\frac{F_{3} L}{(2 E)\left[\pi\left(\frac{2 d}{2}\right)^{2}-\pi\left(\frac{d}{2}\right)^{2}\right]}=\frac{2 F_{3} L}{3 \pi E d^{2}}$
(7) $e_{4}=\frac{F_{4} L_{4}}{E_{4} A_{4}}=\frac{F_{4} L}{(2 E) \pi(2 d / 2)^{2}}=\frac{F_{4} L}{2 \pi d^{2}}$
3. Compatibility
(8) $e_{2}=e_{3} \Rightarrow \frac{4 F_{2} L}{\pi E d^{2}}=\frac{2 F_{3} L}{3 \pi E d^{2}} \Rightarrow F_{2}=\frac{1}{6} F_{3}$
4. Solve

$$
\begin{aligned}
& \text { (3) } \Rightarrow F_{4}=3 P \\
& \text { (2) } \ddagger(3) \Rightarrow-P-\frac{1}{6} F_{3}-F_{3}+F_{4}=0 \\
& \Rightarrow F_{3}=\frac{6}{7}\left[-P+F_{4}\right]=\frac{12}{7} P \\
& \Rightarrow F_{2}=\frac{1}{6}\left(\frac{12}{7} P\right)=\frac{2}{7} P \\
& \text { (1) } \Rightarrow F_{1}=2 P+F_{2}+F_{3}=2 P+\frac{2}{7} P+\frac{12}{7} p=4 P
\end{aligned}
$$

Port a)

$$
\begin{aligned}
& (4) \Rightarrow e_{1}=\frac{16}{7 \pi} \frac{P L}{E d^{2}} \\
& (5) \Rightarrow e_{2}=\frac{8}{7 \pi} \frac{P L}{E d^{2}}=e_{3} \\
& (7) \Rightarrow e_{4}=\frac{3}{2 \pi} \frac{P L}{E d^{2}} \\
& u_{H}=e_{1}+e_{2}+e_{4}=\left(16+\frac{8}{7}+\frac{3}{2}\right) \frac{P L}{\pi E d^{2}}=\frac{261}{14 \pi} \frac{P L}{E d^{2}}
\end{aligned}
$$

Part b)

$$
\begin{align*}
& \sigma_{1}=\frac{F_{1}}{A_{1}}=\frac{4 P}{\pi(d / 2)^{2}}=\frac{16 P}{\pi d^{2}} \tag{1}\\
& \sigma_{2}=\frac{F_{2}}{A_{2}}=\frac{\frac{2}{7} P}{\pi(d / 2)^{2}}=\frac{8}{7 \pi} \frac{P}{d^{2}} \\
& \sigma_{3}=\frac{F_{3}}{A_{3}}=\frac{12}{7} \frac{P}{3 \pi(4) d^{2}}=\frac{48}{21 \pi} \frac{P}{d^{2}} \\
& \sigma_{4}=\frac{F_{4}}{A_{4}}=\frac{3 P}{\pi(2 d / 2)^{2}}=\frac{3}{\pi} \frac{P}{d^{2}}
\end{align*}
$$

