Homework Set H07

Assigned/Due: June 18/June 20

PART A - 10 points

A three-segment rod is constructed as shown below. Segments (1) and (2) have a length of L, whereas segment (3) has a length of $2 L$. Segments (1) and (2) have solid, circular cross sections with diameters of $2 d$ and d, respectively, whereas segment (3) is a tube with outer and inner diameters of $3 d$ and $2 d$, respectively. Segments (1) and (2) are joined by a rigid connecter at C, and segments (2) and (3) are joined by a rigid connector at D. Ends B and H of the rod are fixed to rigid walls. All three segments are made of the same material, with E being the Young's modulus of the material. A force P acts on connector D .
a) Determine the stresses in each of the three segments of the rod.
b) Determine the displacements of connectors C and D .

PART B - 4 points

Consider the two structures below, (i) and (ii). In each case, let F_{1} and F_{2} represent the axial loads carried by members (1) and (2), with the sign conventions that $F_{i}>0$ and $e_{i}>0$ for the ith member being in tension. For each structure, write down the compatibility equation relating the elongations e_{1} and e_{2}.

