Summary: Castigliano solution process

For an indeterminate structure:

- 1. <u>Equilibrium equations</u>. Draw a free body diagram of the structure. Be sure to include all reaction loads. Write down the N_{ean} equilibrium equations.
- 2. Choose redundant loads.
 - \circ Count the number of unknown reactions, N_{react} , in your equilibrium equations.
 - o Determine the number of redundant reactions, N_R : $N_R = N_{react} N_{eqn}$.
 - Choose your N_R "redundant" reactions: R_i ; $i = 1, 2, ..., N_R$ Your choice is arbitrary.
 - Using the equilibrium equations from above, write the non-redundant reactions in terms of the redundant reactions.
- 3. <u>Strain energy function</u>. Write down the strain energy function for each component in terms of the redundant reactions and applied loads. Add these together to get the total strain energy, *U*, for the structure.
- 4. <u>Castigliano's theorem</u>:
 - o Apply Castigliano's theorem: $0 = \partial U / \partial R_i$; $i = 1, 2, ..., N_R$
 - Solve these equations for the redundant reactions.
 - Use the equilibrium equations to solve for the non-redundant reactions.
- 5. <u>Stress analysis</u>. Determine the internal reactions and determine the resulting stress components.