ME 323: Mechanics of Materials
Summer 2023

Homework Set H15
Assigned/Due: June 28/July 2

Consider the shear force/bending moment diagrams for the beam shown below. The beam has a cross-section as shown to the right, with $b=0.2 \mathrm{ft}$.
a) Determine the location Y_{O} of the centroid O of the beam cross-section and the second area moment I_{O} about the neutral axis, z.
b) Determine the maximum magnitude normal stress along section AB of the beam.

c) Determine the shear stress at the neutral axis along section BC of the beam.

Let O be the centroid of the beam cross-section.

$$
\begin{aligned}
& \underline{Y}_{0}=\frac{A_{1} Y_{1}+A_{2} Y_{2}}{A_{1}+A_{2}} \\
& \text { wm } \quad A_{1}=\frac{1}{2}(2 b)(b)=b^{2} \\
& A_{2}=(2 b)(b)=2 b^{2} \\
& \bar{Y}_{1}=\frac{2}{3} b \\
& Y_{2}=b+\frac{b}{2}=\frac{3 b}{2} \\
& \therefore I_{0}=\frac{\left(b^{2}\right)\left(\frac{(3 b)+\left(2 b^{2}\right)\left(\frac{(3 b}{2}\right)}{b^{2}+2 b^{2}}\right)}{} \\
& =\frac{11}{9} b \\
& I_{0}=I_{10}+I_{20} \\
& \omega / I_{10}=\frac{1}{36}(2 b) b^{3}+\frac{1}{2}(2 b)(b)\left[\frac{11}{4} b-\frac{2}{3} b\right]^{2} ; \text { P.A.T. } \\
& =\frac{59}{162} b^{4} \\
& I_{20}=\frac{1}{12}(2 b) b^{3}+(2 b)(b)\left[\frac{3}{2} b-\frac{11}{9} b\right]^{2} ; \text { P.A.T. } \\
& =\frac{52}{162} b^{4}
\end{aligned}
$$

$$
\therefore \quad I_{0}=I_{10}+I_{20}=\frac{37}{54} b^{4}
$$

(b)

$$
\begin{aligned}
M & =180 \text { Mip.ft } \\
\sigma_{d} & =-\frac{M Y_{d}}{I_{0}} \\
\omega / Y_{d} & =-Y_{0}=-\frac{11}{9} b \\
I_{0} & =\frac{37}{54} b^{4} \\
\therefore \quad \sigma_{d} & =\frac{M\left(\frac{11}{9} b\right)}{\frac{37}{54} b^{4}}=\frac{66}{37} \frac{M}{b^{3}}
\end{aligned}
$$

