QI

Conceptual question 10.3

cross section of beam

SIDE view of beam

A shear force V and bending moment M act at a cross section of a trapezoidal cross-sectioned beam. Consider the five points (i), (ii), (iii), (iv) and (v) on the beam cross section, as shown above. Match up the state of stress at each of these five points with the stress elements (a) through (o) shown below. If you choose "(o) NONE of the above", provide a sketch of the correct state of stress for your answer.

The state of stress at point (i) is \qquad tensile in σ and $\tau=0$ (Shearfree)
The state of stress at point (ii) is \qquad neutral axis for $\sigma \geqslant \tau$ down
The state of stress at point (iii) is (g) compression in σ and \bar{C} down
The state of stress at point (iv) is . (g) compression in σ and \bar{C} down
The state of stress at point (v) is

QL

Conceptual question 10.6

A T-beam of length $3 a$ is supported at the two ends and loaded by forces P_{B} and P_{C}. The line of action of the forces is indicated (dashed lines) but the direction is to be determined. The correct moment diagram is properly shown below.

Qu

Conceptual question 10.8

Consider the cantilevered beam above with the concentrated load P at end D. Consider the axial components of stress at points "a" and "b" (σ_{a} and σ_{b}, respectively) at location C along the beam. Circle the response below that most accurately describes the relative sizes of the magnitudes of these two stresses:
a) $\left|\sigma_{a}\right|>\left|\sigma_{b}\right|$
b) $\left|\sigma_{a}\right|=\left|\sigma_{b}\right|$
c) $\left|\sigma_{a}\right|<\left|\sigma_{b}\right|$
Point " a " is further from $0 \operatorname{tnan}^{\prime \prime} 6$ " is from "O"

$$
\Rightarrow\left|\sigma_{a}\right|>\left|\sigma_{b}\right|
$$

Q4

Conceptual question 10.9

cross section \#1

cross section \#2

The cross sections of two beams are shown above, where cross section \#2 is that of cross section \#1 when rotated 90° about the x -axis. Both beams experience the same bending moment M at the cross section. Let σ_{1} and σ_{2} represent the magnitudes of the normal stress acting on cross section \#1 and cross section \#2, respectively. Circle the answer below that most accurately describes the relative sizes of σ_{1} and σ_{2} :
a) $\sigma_{1}<\sigma_{2}$ The $2^{n d}$ area moment for 42 is
b) $\sigma_{1}=\sigma_{2}$
c) $\sigma_{1}>\sigma_{2}$

