## Q | Conceptual question 10.3



cross section of beam

SIDE view of beam

A shear force V and bending moment M act at a cross section of a trapezoidal cross-sectioned beam. Consider the five points (i), (ii), (iii), (iv) and (v) on the beam cross section, as shown above. *Match up the state of stress at each of these five points with the stress elements (a) through (o) shown below.* If you choose "(o) NONE of the above", provide a sketch of the correct state of stress for your answer.

| The state of stress at point (i) is   | <u>(a)</u> | _tensile in sand T=0 (Stressfree)   |
|---------------------------------------|------------|-------------------------------------|
| The state of stress at point (ii) is  | <u>(C)</u> | neutral axis for J = I down         |
| The state of stress at point (iii) is | (9)        | compression in Jand Edown           |
| The state of stress at point (iv) is  | <u>(</u> ) | _ compression in J and I down       |
| The state of stress at point (v) is   | <u>(b)</u> | - compression in J and T=0 (Stress) |
|                                       |            |                                     |



Conceptual questions

## Conceptual question 10.6

A T-beam of length 3a is supported at the two ends and loaded by forces  $P_B$  and  $P_C$ . The line of action of the forces is indicated (dashed lines) but the direction is to be determined. The correct moment diagram is properly shown below.





6

k

Consider the cantilevered beam above with the concentrated load P at end D. Consider the axial components of stress at points "a" and "b" ( $\sigma_a$  and  $\sigma_b$ , respectively) at location C along the beam. Circle the Response below  $P | 7bh^2 / 64 |$  that most accurately describes the relative sizes of the magnitudes of these two stresses:

| b) $ \sigma_a  <  \sigma_b $<br>c) $ \sigma_a  <  \sigma_b $                                       | nt "a" is<br>from "o"<br>P [Ja] > [ | forme from  | mOt | man"6" |
|----------------------------------------------------------------------------------------------------|-------------------------------------|-------------|-----|--------|
| $\frac{\sigma_a}{\sigma_b} = \frac{Mh/I}{Md/I} = \frac{h}{d} > 1 \implies  \sigma_a  >  \sigma_b $ |                                     | k<br>z<br>d | 0   |        |
| aceptual questions                                                                                 | 32                                  |             | b   | ME 323 |

Conceptual questions

Q4-Conceptual question 10.9



cross section #1

cross section #2

The cross sections of two beams are shown above, where cross section #2 is that of cross section #1 when rotated 90° about the x-axis. Both beams experience the same bending moment M at the cross section. Let  $\sigma_1$  and  $\sigma_2$  represent the magnitudes of the normal stress acting on cross section #1 and cross section #2, respectively. Circle the answer below that most accurately describes the relative sizes of  $\sigma_1$  and  $\sigma_2$ :

| a) $\sigma_1 < \sigma_2$ | The 2nd area moment for #2 is              |
|--------------------------|--------------------------------------------|
| b) $\sigma_1 = \sigma_2$ | greater man that of #1 (area forther       |
| c) $\sigma_1 > \sigma_2$ | Spread from neutral plane in # 2 than #1): |
|                          | $I_1 < I_2 \Rightarrow [J_1] > [J_2]$      |