April 6, 2022

INSTRUCTIONS

Begin each problem in the space provided. If additional space is required, use the paper provided to you.

Work appearing on the backside of any exam page will NOT be graded.

If your solution does not follow a logical thought process, it will be assumed to be in error.

PROBLEM No. 1 (25 points)

Problem 1 consists of 10 questions. Each question is worth 2.5 points.

- (a) SAE 1060 steel is a (select one of the following):
 - \bigcirc Low-carbon steel
 - Medium-carbon steel
 - ⊖ High-carbon steel
 - \bigcirc Ultra-high-carbon steel
- (b) Stress-strain curves are shown below for four materials.

The most ductile material is (select one of the following):

- \bigcirc Material A
- \bigcirc Material B
- \bigcirc Material C
- \bigcirc Material D

The strongest material is (select one of the following):

- \bigcirc Material A
- \bigcirc Material B
- \bigcirc Material C
- \bigcirc Material D

The best material for a spring is (select one of the following):

- \bigcirc Material A
- \bigcirc Material B
- \bigcirc Material C
- \bigcirc Material D

- (c) Spokes on a bicycle wheel are most likely which of the following?
 - \bigcirc Hot rolled
 - \bigcirc Cold worked

In a few words, justify your answer.

- (d) Which do you think is fastest?
 - \bigcirc Roller skating on a sphalt
 - \bigcirc Roller blading on a sphalt
 - \bigcirc Ice skating
 - \bigcirc It depends

In a few words, justify your answer.

- (e) The stiffness of a torsion spring can be decreased by which of the following? Select all that apply.
 - $\hfill\square$ Increasing the wire diameter d
 - \Box Increasing the number of body coils
 - $\hfill \Box$ Increasing the length of the spring ends
 - \square Changing the material from chrome-silicon A401 to HD spring A227

(f) The music wire used in a helical extension spring has ultimate tensile strength $S_{ut} = 275$ kpsi.

The yield strength at location A in the spring hook is most likely:

- \bigcirc 165 kpsi
- \bigcirc 205 kpsi
- \bigcirc 220 kpsi
- \bigcirc 240 kpsi
- \bigcirc 275 kpsi
- (g) The most appropriate lubrication type when velocities are small and when friction is to be an absolute minimum is:
 - \bigcirc Boundary
 - \bigcirc Mixed-film
 - ⊖ Hydrodynamic
 - \bigcirc Hydrostatic
 - \bigcirc Elastohydrodynamic
- (h) The type of lubrication when rolling element bearings are lubricated is:
 - Boundary
 - \bigcirc Mixed-film
 - ⊖ Hydrodynamic
 - ⊖ Hydrostatic
 - \bigcirc Elastohydrodynamic

(i) Catalog data are shown below for a deep groove ball bearing. The catalog rating life is 10^6 cycles. Determine the radial load that can be supported for 10^7 cycles with 90% reliability.

- \bigcirc 425 N
- 460 N
- 800 N
- 850 N
- 915 N
- 1740 N
- \bigcirc None of the above
- \bigcirc Cannot be determined from the given information
- (j) Two spheres, each with Poisson's ratio ν = 0.3, are pressed together with a 10 N force.

The radius of the circular contact area is a = 0.0990 mm.

Determine the maximum shear stress and the depth at which the the maximum shear stress occurs in the spheres.

PROBLEM No. 2 (16 points)

A part is loaded with a combination of bending, axial, and torsion such that the following nominal stresses are created at a particular location.

Bending: Completely reversed, with a maximum stress of 60 MPa

Axial: Constant stress of 20 MPa

Torsion: Repeated load, varying from 0 MPa to 50 MPa

Assume the varying stresses are in phase with each other.

The part contains a notch such that $K_{f,bending} = 1.4$, $K_{f,axial} = 1.1$, and $K_{fs,torsion} = 2.0$.

The material properties are $S_y = 300$ MPa and $S_{ut} = 400$ MPa.

The completely adjusted endurance limit is $S_e = 200$ MPa.

- (a) The factor of safety for infinite life using the Goodman criterion. If infinite life is not predicted, estimate the number of cycles to failure.
- (b) Check for first-cycle yielding.

Name:

PROBLEM No. 3 (25 points)

A helical compression spring is subjected to cyclic loading, where the minimum force is 60 lbf and the maximum force is 150 lbf over a deflection of 1 inch.

The spring index is C = 7 and the wire diameter is d = 0.207 in. The spring is made of music wire and the spring has been peened. The spring ends are squared and ground.

- (a) The factor of safety for infinite life using the Goodman criterion.
- (b) The spring rate.
- (c) The total number of coils.

Name:

PROBLEM No. 4 (16 points)

Two bearings support a shaft and gear. The shaft and gear have total mass 133 kg. The shaft rotates at 30 rpm.

The load acting on the gear is $\vec{F} = 3\vec{i} + 4\vec{j}$ kN.

The distance between the gear and the bottom bearing is b = 20 cm. The distance between the gear and the top bearing is c = 50 cm.

The angular contact ball bearing selected for the bottom bearing has catalog rating loads $C_{10} = 14.8$ kN and $C_0 = 7.65$ kN.

- (a) The axial load acting at the bottom bearing.
- (b) The radial load acting at the bottom bearing.
- (c) The life of the bottom bearing if 95% reliability is required.

PROBLEM No. 5 (18 points)

The close running fit H8/f7 has been selected for a journal bearing with a 30 mm basic size, giving dimensions of $D_{min} = 30$ mm, $D_{max} = 30.033$ mm, $d_{min} = 29.959$ mm and $d_{max} = 29.98$ mm.

SAE 30 oil is used as the lubricant. The shaft rotates at 2000 rpm and the operating temperature is 60 $^{\circ}$ C.

The applied load is 3.1 kN.

The bearing length is 30 mm.

- (a) The maximum and minimum clearances
- (b) The Sommerfeld number using the average clearance
- (c) The coefficient of friction
- (d) The power lost to friction
- (e) If the bearing was analyzed using the maximum clearance, would the power lost to friction increase or decrease? Briefly justify your answer.