April 6, 2022

INSTRUCTIONS

Begin each problem in the space provided. If additional space is required, use the paper provided to you.
Work appearing on the backside of any exam page will NOT be graded.
If your solution does not follow a logical thought process, it will be assumed to be in error.

PROBLEM No. 1 (25 points)
Problem 1 consists of 10 questions. Each question is worth 2.5 points.
(a) SAE 1060 steel is a (select one of the following):

Low-carbon steel
Medium-carbon steel
High-carbon steelUltra-high-carbon steel

(b) Stress-strain curves are shown below for four materials.

The most ductile material is (select one of the following):Material AMaterial B

- Material CMaterial D
The strongest material is (select one of the following):
(1) Material AMaterial BMaterial CMaterial D
The best material for a spring is (select one of the following):Material AMaterial B
- Material C

Material D
largest area under the curse.
（c）Spokes on a bicycle wheel are most likely which of the following？Hot rolled
Cold worked

In a few words，justify your answer．
wold worked parts have bright，new finish and are more accurate
（d）Which do you think is fastest？Roller skating on asphaltRollerblading on asphaltIce skatingIt depends

In a few words，justify your answer．
a reasonable justification would include some discussion of rolling vs．sliding contact， friction and loo \＃of parts
（e）The stiffness of a torsion spring can be decreased by which of the following？Select all that apply．Increasing the wire diameter $d \quad d \uparrow \rightarrow V / \uparrow$ \square Increasing the wire diameter d Increasing the number of body coils $\mathrm{N}_{b} \uparrow \rightarrow \mathrm{Na}_{a} \uparrow \rightarrow \ell^{\prime} \downarrow$風Increasing the length of the spring ends $l_{1} \uparrow \rightarrow N a \eta \rightarrow k^{\prime} b$ \rightarrow Changing the material from chrome－silicon A401 to HD spring A227 届 \downarrow 誛 \downarrow

$$
k^{\prime}=\frac{d^{4} E}{10.8 \mathrm{DNa}}
$$

$$
N_{a}=N_{b}+\frac{l_{1}+l_{2}}{\substack{\text { Page of 12 } \\ \text { sid }}}
$$

(f) The music wire used in a helical extension spring has ultimate tensile strength $S_{u t}=275 \mathrm{kpsi}$.

The yield strength at location A in the spring hook is most likely:

(g) The most appropriate lubrication type when velocities are small and when friction is to be an absolute minimum is:
\bigcirc BoundaryMixed-filmHydrodynamic
Hydrostatic \longrightarrowElastohydrodynamic
(h) The type of lubrication when rolling element bearings are lubricated is:BoundaryMixed-filmHydrodynamicHydrostatic
(1) Elastohydrodynamic
(i) Catalog data are shown below for a deep groove ball bearing. The catalog rating life is 10^{6} cycles. Determine the radial load that can be supported for 10^{7} cycles with 90% reliability.

(j) Two spheres, each with Poisson's ratio $\nu=0.3$, are pressed together with a 10 N force.

The radius of the circular contact area is $a=0.0990 \mathrm{~mm}$.
Determine the maximum shear stress and the depth at which the the maximum shear stress occurs in the spheres.

$$
\begin{aligned}
& P_{\text {max }}=\frac{3 F}{2 \pi a^{2}}=\frac{3 \cdot 10 \mathrm{~N}}{2 \pi\left(0.099 \mathrm{~mm} \cdot \frac{1 \mathrm{~m}}{1000 \mathrm{~mm}}\right)^{2}=490 \mathrm{MPa}} \\
& \tau_{\text {max }}=0.3 p_{\text {max }}=146 \mathrm{MPa} \\
& z=0.48 \cdot 0.099 \mathrm{~mm}=0.04752 \mathrm{~mm}
\end{aligned}
$$

PROBLEM No. 2 (16 points)
A part is loaded with a combination of bending, axial, and torsion such that the following nominal stresses are created at a particular location.

Bending: Completely reversed, with a maximum stress of 60 MPa
Axial: Constant stress of 20 MPa
Torsion: Repeated load, varying from 0 MPa to 50 MPa
Assume the varying stresses are in phase with each other.
The part contains a notch such that $K_{f, \text { bending }}=1.4, K_{f, \text { axial }}=1.1$, and $K_{f s, \text { torsion }}=2.0$.
The material properties are $S_{y}=300 \mathrm{MPa}$ and $S_{u t}=400 \mathrm{MPa}$.
The completely adjusted endurance limit is $S_{e}=200 \mathrm{MPa}$.
Determine the following.
(a) The factor of safety for infinite life using the Goodman criterion. If infinite life is not predicted, estimate the number of cycles to failure.
(b) Check for first-cycle yielding.

Bending completely reversed

$$
\sigma_{\text {al, bending }}=60 \mathrm{mPR}
$$

$$
\sigma_{m 0,} \text { bending }=0 \quad \text { Page } 6 \text { of } 13
$$

$$
\begin{aligned}
& \text { a) } \frac{1}{n_{f}}=\frac{\sigma_{a}{ }^{\prime}}{s_{e}}+\frac{\sigma_{m}{ }^{\prime}}{s_{\text {ut }}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+3\left[\left(k s_{s}\right)_{\text {torsion }} \tau_{\text {moi erasion }}\right]^{2}\right\}^{1 / 2}
\end{aligned}
$$

PROBLEM No. 2 (continued)
Axial constant

$$
\begin{aligned}
& \sigma_{a 0, \text { axial }}=0 \\
& \sigma_{m 01} \text { axial }=20 \mathrm{mpa}
\end{aligned}
$$

Torsion repeated

$$
\begin{aligned}
& \tau_{a_{0}}, \text { torsion }=25 \mathrm{mPa} \\
& \tau_{\text {me, forsim }}=25 \mathrm{mPa}
\end{aligned}
$$

$$
\begin{aligned}
& T_{\text {ma, torsim }}=25 \mathrm{MPa} \\
& \sigma_{a}^{\prime}=\left\{[1.4 .60 \mathrm{MPa}]^{2}+3[2.0 .25 \mathrm{MPa}]^{2}\right\}^{1 / 2}=120.6 \mathrm{MPa} \\
& \sigma_{m}^{\prime}=\left\{[1.1 .20 \mathrm{mPa}]^{2}+3[2.0 .25 \mathrm{mPa}]^{2}\right\}^{1 / 2}=89.4 \mathrm{mPa} \\
& \frac{1}{n_{f}}=\frac{120.6 \mathrm{mPa}}{200 \mathrm{mPa}}+\frac{89.4 \mathrm{MPa}}{400 \mathrm{MPa}} \rightarrow n_{f}=1.2
\end{aligned}
$$

infinite life is predicted.
b) $n \approx \frac{S_{y}}{\sigma_{a}^{\prime}+\sigma_{m}^{\prime}}=\frac{300 \mathrm{mPa}}{(120.6+89.4) \mathrm{MPa}}=1.4$

PROBLEM No. 3 (25 points)
A helical compression spring is subjected to cyclic loading, where the minimum force is 60 lbf and the maximum force is 150 lbf over a deflection of 1 inch.

The spring index is $C=7$ and the wire diameter is $d=0.207 \mathrm{in}$. The spring is made of music wire and the spring has been peened. The spring ends are squared and ground.

Determine the following.
(a) The factor of safety for infinite life using the Goodman criterion.
(b) The spring rate.
(c) The total number of coils.

$$
\begin{aligned}
& \frac{1}{n_{f}}=\frac{S_{h}^{T}+\tau_{n}}{S_{0} s_{S_{s}}} \frac{S_{m} T_{m} \tau_{m}}{S_{y}+S_{s u}} \\
& \tau_{\text {min }}=K_{B} \frac{8 F_{\text {min } D}}{\pi d^{3}}=1.2 \cdot \frac{8 \cdot 60 \mathrm{lbf} \cdot 1.449 \mathrm{in}}{\pi \cdot(0.207 \mathrm{in})^{3}}=30 \mathrm{kpsi} \\
& K_{B}=\frac{4 C+2}{4 C-3}=\frac{4.7+2}{4.7-3}=\frac{30}{25}=1.2 \\
& F_{\text {min }}=60 \mathrm{lbf} \\
& C=\frac{D}{d} \rightarrow D=C d=7 \cdot 0.207 \mathrm{in}=1.449 \mathrm{in} \\
& \tau_{\max }=k_{B} \frac{8 F_{\max } D}{\pi \Delta^{3}}=74.9 \mathrm{kpsi} \\
& F_{\text {max }}=150 \mathrm{lbf}
\end{aligned}
$$

PROBLEM No. 3 (continued)

$$
\begin{aligned}
& \tau_{a}=\frac{\tau_{\text {max }}-\tau_{\text {min }}}{2}=22.5 \mathrm{kpsi} \\
& \tau_{m}=\frac{\tau_{\text {max }}+\tau_{\text {min }}}{2}=52.4 \mathrm{kpsi} \\
& S_{s c}=\frac{S_{s a}}{1-\frac{S_{s m n}}{S_{s u}}}=\frac{57.5 \mathrm{kpsi}}{1-\frac{77.5 \mathrm{kpsi}}{169.2 \mathrm{kpsi}}}=106 \mathrm{kpsi} \\
& S_{\text {au }}=0.67 \text { Set }=169.2 \mathrm{kpsi} \\
& S_{u t}=\frac{A}{d^{m}}=\frac{201}{0.207^{0.145}}=252.5 \mathrm{kpsi} \\
& n_{f}=\left(\frac{22.5 \mathrm{kpsi}}{106 . k_{p s i}}+\frac{52.4 \mathrm{kpsi}}{169.2 \mathrm{kpsi}}\right)^{-1}=1.9
\end{aligned}
$$

b) $k=\frac{F}{y}=\frac{150 \mathrm{lbf}-60 \mathrm{lbf}}{\operatorname{lin}}=90 \mathrm{lbf} / \mathrm{in}$
c) $k=\frac{d^{4} G}{8 D^{3} \mathrm{Na}_{a}}=\frac{(0.207 \mathrm{in})^{4} \cdot 11.6 \cdot 10^{6} \mathrm{lbf} / \mathrm{in}^{2}}{8 \cdot(1.449 \mathrm{in})^{3} \cdot \mathrm{Na}}=90 \mathrm{lbf} / \mathrm{in}$

$$
\begin{aligned}
& N_{a}=\eta .7 \text { coils } \\
& N_{t}=N_{a}+2=11.7 \text { coils } 9 \text { of } 13
\end{aligned}
$$

PROBLEM No. 4 (16 points)
Two bearings support a shaft and gear. The shaft and gear have total mass 133 kg . The shaft rotates at 30 rpm.

The load acting on the gear is $\vec{F}=3 \vec{i}+4 \vec{j} \mathrm{kN}$.
The distance between the gear and the bottom bearing is $b=20 \mathrm{~cm}$. The distance between the gear and the top bearing is $c=50 \mathrm{~cm}$.

The angular contact ball bearing selected for the bottom bearing has catalog rating loads $C_{10}=14.8 \mathrm{kN}$ and $C_{0}=7.65 \mathrm{kN}$.

Determine the following.
(a) The axial load acting at the bottom bearing.
(b) The radial load acting at the bottom bearing.
(c) The life of the bottom bearing if 95% reliability is required.

PROBLEM No. 4 (continued)
c) $a_{1} F_{R} L_{R}^{1 / a}=F_{D} L_{D}^{1 / a}$
$a_{1}=0.64$ for 95% reliability

$$
\begin{aligned}
& F_{R}=G_{0}=14.8 \mathrm{kN} \\
& L_{R}=10^{6} \text { ugcles }
\end{aligned}
$$

$a=3$ for ball bearings

$$
\begin{aligned}
& F_{D}=F_{e}=X_{i} V F_{r}+y_{i} F_{a}=0.56 \cdot 1 \cdot 3.57+1.31 \cdot 1.3=3.7 \mathrm{kN} \\
& \frac{F_{a}}{C_{0}}=\frac{1.3 \mathrm{kN}}{7.65 \mathrm{kN}}=0.170 \rightarrow e=0.34 \\
& \frac{F_{a}}{V_{r}}=\frac{1.3 \mathrm{kN}}{1.3 .57 \mathrm{kN}}=0.364>e \rightarrow i=2 \\
& \sum_{\text {inner ring }}^{\text {rotates }} \quad X_{2}=0.56 \\
& \quad y_{2}=1.31
\end{aligned}
$$

$0.64 \cdot 14.8 \mathrm{kN} \cdot\left(10^{6}\right)^{1 / 3}=3.7 \mathrm{kN} \cdot L_{D}^{1 / 3}$

$$
L_{D}=\left(\frac{0.64 \cdot 14.8 \cdot 100}{3.7}\right)_{\text {Page 11 of 13 }}^{3}=1.7 \cdot 10^{7} \text { agcles }
$$

PROBLEM No. 5 (18 points)
The close running fit $\mathrm{H} 8 / \mathrm{f} 7$ has been selected for a journal bearing with a 30 mm basic size, giving dimensions of $D_{\min }=30 \mathrm{~mm}, D_{\max }=30.033 \mathrm{~mm}, d_{\min }=29.959 \mathrm{~mm}$ and $d_{\max }=29.98 \mathrm{~mm}$.

SEE 30 oil is used as the lubricant. The shaft rotates at 2000 rpm and the operating temperature is $60{ }^{\circ} \mathrm{C}$.
The applied load is 3.1 kN .
The bearing length is 30 mm .
Determine the following.
(a) The maximum and minimum clearances
(b) The Sommerfeld number using the average clearance
(c) The coefficient of friction
(d) The power lost to friction
(e) If the bearing was analyzed using the maximum clearance, would the power lost to friction increase or decrease? Briefly justify your answer.

$$
\text { a) } \begin{aligned}
c_{\text {max }} & =\frac{D_{\max }-d_{\text {min }}}{2}=\frac{30.033-29.951}{2}=0.037 \mathrm{~mm} \\
c_{\text {min }} & =\frac{D_{\text {min }}-d_{\max }}{2}=\frac{30-29.98}{2}=0.01 \mathrm{~mm} \\
c_{\text {avg }} & =\frac{0.037+0.01}{2}=0.0235 \mathrm{~mm}
\end{aligned}
$$

$$
r=15 \mathrm{~mm}
$$

$$
c=0.0235 \mathrm{~mm}
$$

PROBLEM No. 5 (continued)

$$
\begin{aligned}
& \mu=26 \mathrm{mPa} \cdot \mathrm{~s} \\
& N=2000 \frac{\mathrm{res}}{\min } \cdot \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=33.33 \mathrm{rev} / \mathrm{s} \\
& P=\frac{W}{2 \mathrm{re}}=\frac{3100 \mathrm{~N}}{0.03 \mathrm{~m} \cdot 0.03 \mathrm{~m}}=3.44 \mathrm{MPa}
\end{aligned}
$$

c) Figure $12.17 \quad \omega / \quad S=0.1$ and $e / d=1$

$$
\begin{aligned}
& \frac{r}{c} f=2.8 \\
& f=2.8 \cdot \frac{0.0235 \mathrm{~mm}}{15 \mathrm{~mm}}=0.0044
\end{aligned}
$$

d)

$$
\begin{aligned}
\text { power } & =f \mathrm{WrN}=0.0044 \cdot 3100 \mathrm{~N} \cdot 0.015 \mathrm{~m} \cdot 33.33 \frac{\mathrm{rev}}{\mathrm{~s}} \cdot \frac{2 \pi \mathrm{rad}}{\mathrm{rev}} \\
& =42.7 \mathrm{~W}
\end{aligned}
$$

e) (maximum clearance $S=\left(\frac{15}{0.037}\right)^{2} \cdot \frac{26 \cdot 10^{-3} \cdot 33.33}{3.44 \cdot 10^{6}}=0.04$
$\frac{r}{c} f=1.6 \rightarrow$ coefficient of friction decreases. and power loss will decrease.

