INSTRUCTIONS:

This quiz is open-book, open-note, and you may work with your classmates.

GIVEN:

A helical compression spring is wound from 2-mm ASTM A227 hard-drawn wire and has an outside diameter of $19~\mathrm{mm}$.

The spring ends are closed and ground, and there are ten total coils. Note that "closed" and "squared" are synonyms.

Material	ASTM No.	Exponent m	Diameter, in	A , kpsi \cdot in m	Diameter, mm	A , MPa \cdot mm m	Relative Cost of Wire
Music wire*	A228	0.145	0.004-0.256	201	0.10-6.5	2211	2.6
OQ&T wire [†]	A229	0.187	0.020-0.500	147	0.5-12.7	1855	1.3
Hard-drawn wire [‡]	A227	0.190	0.028-0.500	140	0.7-12.7	1783	1.0

	Elastic Limit, Percent of S_{ut}		Diameter	E		$oldsymbol{G}$	
Material	Tension	Torsion	<i>d</i> , in	Mpsi	GPa	Mpsi	GPa
Music wire A228	65–75	45–60	< 0.032	29.5	203.4	12.0	82.7
			0.033-0.063	29.0	200	11.85	81.7
			0.064-0.125	28.5	196.5	11.75	81.0
			>0.125	28.0	193	11.6	80.0
HD spring A227	60–70	(45)-55	< 0.032	28.8	198.6	11.7	80.7
			0.033-0.063	28.7	197.9	11.6	80.0
			0.064-0.125	28.6	197.2	11.5	79.3
			0.125	28.5	196.5	11.4	78.6

		Type of Spring Ends				
Term	Plain	Plain and Ground	Squared or Closed	Squared and Ground		
End coils, N_e	0	1	2	2		
Total coils, N_t	N_a	$N_a + 1$	$N_a + 2$	$N_a + 2$		
Free length, L_0	$pN_a + d$	$p(N_a + 1)$	$pN_a + 3d$	$pN_a + 2d$		
Solid length, L_s	$d(N_t+1)$	dN_t	$d(N_t+1)$	dN_t		
Pitch, p	$(L_0-d)/N_a$	$L_0/(N_a+1)$	$(L_0 - 3d)/N_a$	$(L_0 - 2d)/N_a$		

FIND:

- a) The torsional yield strength of the wire, S_{sy} .
- b) The spring rate, k.
- c) The static load that can be applied before the spring yields.
- d) The free length of the spring, L_0 , for the load found in part (c) to cause the spring to become solid.

a)
$$S_{sy} = 0.45 S_{ut} = 0.45 \frac{A}{A^n} = 0.45 \frac{1783}{2^{a.19}} = 703.3 \text{ M/s}$$

b)
$$k \approx \frac{d^{4}6}{80^{3}N_{4}} = \frac{(0.002 \,\mathrm{m})^{4} \cdot 79.3.10^{9} \,N/m^{2}}{8 \,(0.017 \,\mathrm{m})^{3} \cdot 8} = 40.35 \,N/m$$

$$d = 2 \text{ mm} = 0.078 \text{ in}$$

$$N_a = N_t - 2 = 8$$

c)
$$S_{sy} = \tau = K_B \frac{8FD}{11d^3}$$

$$K_B = \frac{4C+2}{4C-3} = 1.16$$

$$C = \frac{D}{d} = \frac{17}{2} = 8.5$$

$$F = \frac{55\sqrt{110^3}}{8 \text{ KbD}} = \frac{703.3 \cdot 10^6 \text{ N/m}^2 \cdot \text{T} (0.002 \text{ m})^3}{8 \cdot 1.16 \cdot (0.014 \text{ m})}$$

$$= 111.9 \text{ N}$$

$$l = \frac{F}{L_0 - L_0} = \frac{4025 \text{ N/m}}{4025 \text{ N/m}} \rightarrow \frac{111.9 \text{ N}}{4025 \text{ N/m}} + L_0 = \frac{47.7 \text{ mm}}{4025 \text{ N/m}}$$

$$L_S = dNt = 2 mm \cdot 10 = 20 mm$$