INSTRUCTIONS:
This quiz is open-book, open-note, and you may work with your classmates.
GIVEN:
An M14 x 2 bolt with a nut is used to clamp together (wo $15-\mathrm{mm}$ steel plates.
FIND:
a) A suitable length for the bolt, rounded up to the nearest $5 \mathrm{~mm} . \rightarrow$ follow process on
b) The bolt stiffness, k_{b}. See next page next page.
c) The member stiffness, k_{m}.

Note: because the clamped material is all steel, the following equation can be used.

$$
\frac{k_{m}}{E d}=A e^{(B d / l)}
$$

d) The bolt stiffness constant, C.

Table 8-8 Stiffness Parameters of Various Member Materials ${ }^{\dagger}$

Source: Data from J. Wileman, M. Choudury, and I. Green, "Computation of Member Stiffness in Bolted Connections," Trans. ASME, J. Mech. Design, vol. 113, December 1991, pp. 432-437.

Table A-31 Dimensions of Hexagonal Nuts

Nominal Size, Jj mm	Width \boldsymbol{W}	Regular Hexagonal	Thick or Slotted	JAM
M5	8	4.7	5.1	2.7
M6	10	5.2	5.7	3.2
M8	13	6.8	7.5	4.0
M10	16	8.4	9.3	5.0
M12	18	10.8	12.0	6.0
M14	21	12.8	14.1	7.0
M16	24	14.8	16.4	8.0
M20	30	18.0	20.3	10.0
M24	36	21.5	23.9	12.0
M30	46	25.6	28.6	15.0
M36	55	31.0	34.7	18.0

c)

$$
\begin{aligned}
k_{m} & =207 \cdot 10 \frac{1}{\mathrm{~N}} \cdot \mathrm{~m} \cdot 0.014 \mathrm{~m} \cdot 0.78715 \exp (0.62873 \cdot \mathrm{n}+130) \\
& =3059 \mathrm{MN} / \mathrm{m}
\end{aligned}
$$

Table 8-7 Suggested Procedure for Finding Fastener Stiffness

(a)

(b)

Given fastener diameter d and pitch p in mm or number of threads per inch
Washer thickness: t from Table A-32 or A-33 NA
Nut thickness [Figure (a) only]: H from Table A-31 $=12.8 \mathrm{~mm}$ (page l)
Grip length:
For Figure (a): $\quad l=$ thickness of all material squeezed between $=30 \mathrm{~mm}$ face of bolt and face of nut

For Figure $(b): \quad l= \begin{cases}h+t_{2} / 2, & t_{2}<d \\ h+d / 2, & t_{2} \geq d\end{cases}$
Fastener length (round up using Table A-17*):
For Figure (a): $\quad L>l+H=30+12.8=42.8 \rightarrow$
For Figure (b): $\quad L>h+1.5 d$
Threaded length L_{T} : Inch series:

$$
L_{T}= \begin{cases}2 d+\frac{1}{4} \mathrm{in}, & L \leq 6 \text { in } \\ 2 d+\frac{1}{2} \mathrm{in}, & L>6 \mathrm{in}\end{cases}
$$

Metric series:

$$
\begin{aligned}
& \text { Metric series: } \\
& L_{T}= \begin{cases}2 d+6 \mathrm{~mm}, & L \leq 125 \mathrm{~mm}, d \leq 48 \mathrm{~mm}=2.14+6=34 \mathrm{~mm} \\
2 d+12 \mathrm{~mm}, & 125<L \leq 200 \mathrm{~mm} \\
2 d+25 \mathrm{~mm}, & L>200 \mathrm{~mm}\end{cases} \\
& \text { portion in grip: } l_{d}=L-L_{T}=45-34=11 \mathrm{~mm}
\end{aligned}
$$

Length of unthreaded portion in grip: $l_{d}=L-L_{T}=45-34=11 \mathrm{~mm}$
Length of threaded portion in grip:

$$
\begin{aligned}
& l_{d}=L-L_{T}=45-11=19 \mathrm{~mm} \\
& l_{t}=l-l_{d}=30-11=12
\end{aligned}
$$

Area of unthreaded portion:
Area of threaded portion:

$$
\begin{aligned}
& A_{t} \text { from Table } 8-1 \text { or } 8-2=115 \mathrm{~mm}^{2} \\
& A_{d} A_{t} E
\end{aligned}
$$

Fastener stiffness:

$$
\begin{aligned}
& h_{i}=1-l_{d}=30-11=19 \mathrm{~mm} \\
& \left.A_{d}=\pi d^{2} / 4=114\right)^{2} / 4=153.9 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
k_{b}=\frac{A_{d} A_{t} E}{A_{d} l_{t}+A_{t} l_{d}}
$$

*Bolts and cap screws may not be available in all the preferred lengths listed in Table A-17. Large fasteners may not be available in fractional inches or in millimeter lengths ending in a nonzero digit. Check with your bolt supplier for availability.

