Name:

1.

INSTRUCTIONS:

This quiz is open-book, open-note, and you may work with your classmates.

GIVEN:

An M14 x 2 bolt with a nut is used to clamp together two 15-mm steel plates.

FIND:

- a) A suitable length for the bolt, rounded up to the nearest 5 mm. \rightarrow follow process on b) The bolt stiffness, k_b . See next one
- c) The member stiffness, k_m . Note: because the clamped material is all steel, the following equation can be used.

$$\frac{k_m}{E d} = A e^{(B d/l)}$$

d) The bolt stiffness constant, C.

Table 8–8 Stiffness Parameters of Various Member Materials[†]

	Poisson	Elastic Modulus			C m	
Material Used	Ratio	GPa	Mpsi	A	В	for km
Steel	0.291	207	30.0	0.787 15	0.628 73	5 (
Aluminum	0.334	71	10.3	0.796 /0	0.638 16	
Copper	0.326	119	17.3	0.795 68	0.635 53	
Gray cast iron	0.211	100	14.5	0.778 71	0.616 16	
General expression				0.789 52	0.629 14	

Source: Data from J. Wileman, M. Choudury, and I. Green, "Computation of Member Stiffness in Bolted Connections," Trans. ASME, J. Mech. Design, vol. 113, December 1991, pp. 432-437.

Table A-31 Dimensions of Hexagonal Nuts

		Helght H				
Nominal Size, jn Mi	Width ₩	Regular Hexagonal	Thick or Slotted	JAM		
M5	8	4.7	5.1	2.7		
M6	10	5.2	5.7	3.2		
M8	13	6.8	7.5	4.0		
M10	16	8.4	9.3	5.0		
M12	18	10.8	12.0	6.0		
M14	21	12.8	14.1	7.0		
M16	24	14.8	16.4	8.0		
M20	30	18.0	20.3	10.0		
M24	36	21.5	23.9	12.0		
M30	46	25.6	28.6	15.0		
M36	55	31.0	34.7	18.0		

C) km = 207-109 N/m2 · 0.014 m· 0.78715 exp (0.62873. 44/30)

Table 8-7 Suggested Procedure for Finding Fastener Stiffness

Given fastener diameter d and pitch p in mm or number of threads per inch

Washer thickness: t from Table A=32 or A=33

Nut thickness [Figure (a) only]: H from Table A-31 = 12.8 mm

Grip length: l = thickness of all material squeezed between = 30 m \mathbb{M} For Figure (a): face of bolt and face of nut

 $l = \begin{cases} h + t_2/2, & t_2 < d \\ h + d/2, & t_2 \ge d \end{cases}$ For Figure (b):

Fastener length (round up using Table A-17*):

For Figure (a): $L > l + H = 30 + 12.8 = 42.8 \rightarrow 45 \text{ mm}$ For Figure (b): L > h + 1.5d

Threaded length L_T : Inch series:

 $L_T = \begin{cases} 2d + \frac{1}{4} \text{ in,} & L \le 6 \text{ in} \\ 2d + \frac{1}{2} \text{ in,} & L > 6 \text{ in} \end{cases}$

Length of unthreaded portion in grip: $l_d = L - L_T = 45 - 34 = 11 \text{ mm}$ Length of unthreaded portion in grip: $l_d = L - L_T = 45 - 34 = 11 \text{ mm}$ Length of threaded portion: $A_d = \pi d^2/4 = \pi t (14)^2/4 = 153.9 \text{ mm}^2$ Area of threaded portion: A_t from Table 8-1 or 8-2

 A_t from Table 8–1 or 8–2 = //5 mm $k_b = \frac{A_d A_t E}{A_d l_t + A_t l_z}$

Fastener stiffness:

^{*}Bolts and cap screws may not be available in all the preferred lengths listed in Table A-17. Large fasteners may not be available in fractional inches or in millimeter lengths ending in a nonzero digit. Check with your bolt supplier for availability.