13-40 Given: $P=5$ teeth $/ \mathrm{in}, N_{2}=18 T, N_{3}=45 T$,

$$
\phi_{n}=20^{\circ}, H=32 \mathrm{hp}, n_{2}=1800 \mathrm{rev} / \mathrm{min}
$$

Gear 2

$$
\begin{aligned}
& T_{\text {in }}=\frac{63025(32)}{1800}=1120 \mathrm{lbf} \cdot \mathrm{in} \\
& d_{P}=\frac{18}{5}=3.600 \mathrm{in} \\
& d_{G}=\frac{45}{5}=9.000 \mathrm{in} \\
& W_{32}^{t}=\frac{1120}{3.6 / 2}=622 \mathrm{lbf} \\
& W_{32}^{r}=622 \tan 20^{\circ}=226 \mathrm{lbf} \\
& F_{a 2}^{t}=W_{32}^{t}=622 \mathrm{lbf}, \quad F_{a 2}^{r}=W_{32}^{r}=226 \mathrm{lbf} \\
& F_{a 2}=\left(622^{2}+226^{2}\right)^{1 / 2}=662 \mathrm{lbf}
\end{aligned}
$$

Each bearing on shaft a has the same radial load of $R_{A}=R_{B}=662 / 2=331 \mathrm{lbf}$.
Gear 3

$$
\begin{aligned}
& W_{23}^{t}=W_{32}^{t}=622 \mathrm{lbf} \\
& W_{23}^{r}=W_{32}^{r}=226 \mathrm{lbf} \\
& F_{b 3}=F_{b 2}=662 \mathrm{lbf} \\
& R_{C}=R_{D}=662 / 2=331 \mathrm{lbf}
\end{aligned}
$$

Each bearing on shaft b has the same radial load which is equal to the radial load of bearings A and B. Thus, all four bearings have the same radial load of 331 lbf . Ans.

