**13-40** Given: P = 5 teeth/in,  $N_2 = 18T$ ,  $N_3 = 45T$ ,  $\phi_n = 20^\circ$ , H = 32 hp,  $n_2 = 1800$  rev/min

*Gear* 2

$$T_{in} = \frac{63025(32)}{1800} = 1120 \text{ lbf} \cdot \text{in}$$
  

$$d_{P} = \frac{18}{5} = 3.600 \text{ in}$$
  

$$d_{G} = \frac{45}{5} = 9.000 \text{ in}$$
  

$$W_{32}^{t} = \frac{1120}{3.6/2} = 622 \text{ lbf}$$
  

$$W_{32}^{r} = 622 \tan 20^{\circ} = 226 \text{ lbf}$$
  

$$F_{a2}^{t} = W_{32}^{t} = 622 \text{ lbf}, \quad F_{a2}^{r} = W_{32}^{r} = 226 \text{ lbf}$$
  

$$F_{a2} = (622^{2} + 226^{2})^{1/2} = 662 \text{ lbf}$$



Each bearing on shaft *a* has the same radial load of  $R_A = R_B = 662/2 = 331$  lbf.

*Gear* 3



Each bearing on shaft b has the same radial load which is equal to the radial load of bearings A and B. Thus, all four bearings have the same radial load of 331 lbf. Ans.