8-17 a) Grip, $l=2(2+0.095)=4.19$ in. $L \geq 4.19+7 / 16=4.628$ in.
Rounding up, $L=4.75$ in Ans.
(b) From Eq. $(8-13), L_{T}=2 d+1 / 4=2(0.5)+0.25=1.25$ in

From Table 8-7, $l_{d}=L-L_{T}=4.75-1.25=3.5 \mathrm{in}, l_{t}=l-l_{d}=4.19-3.5=0.69 \mathrm{in}$ $A_{d}=\pi\left(0.5^{2}\right) / 4=0.1963 \mathrm{in}^{2}$. From Table 8-2, $A_{t}=0.1419 \mathrm{in}^{2}$. From Eq. (8-17)

$$
k_{b}=\frac{A_{d} A_{t} E}{A_{d} l_{t}+A_{t} l_{d}}=\frac{0.1963(0.1419) 30}{0.1963(0.69)+0.1419(3.5)}=1.322 \mathrm{Mlbf} / \mathrm{in} \quad \text { Ans }
$$

(c)

Upper and lower halves are the same. For the upper half,
Steel frustum: $t=0.095 \mathrm{in}, d=0.531 \mathrm{in}, D=0.75 \mathrm{in}$, and $E=30 \mathrm{Mpsi}$. From Eq. (8-20)

$$
k_{1}=\frac{0.5774 \pi(30) 0.531}{\ln \frac{[1.155(0.095)+0.75-0.531](0.75+0.531)}{[1.155(0.095)+0.75+0.531](0.75-0.531)}}=89.20 \mathrm{Mlbf} / \mathrm{in}
$$

Aluminum: $t=2 \mathrm{in}, d=0.5 \mathrm{in}, D=0.75+2(0.095) \tan 30^{\circ}=0.860 \mathrm{in}$, and $E=10.3$
Mpsi. Eq. $(8-20) \Rightarrow k_{2}=9.24 \mathrm{Mlbf} / \mathrm{in}$
For the top half, $k_{m}^{\prime}=\left(1 / k_{1}+1 / k_{2}\right)^{-1}=(1 / 89.20+1 / 9.24)^{-1}=8.373 \mathrm{Mlbf} / \mathrm{in}$
Since the bottom half is the same, the overall stiffness is given by

$$
k_{m}=\left(1 / k_{m}^{\prime}+1 / k_{m}^{\prime}\right)^{-1}=k_{m}^{\prime} / 2=8.373 / 2=4.19 \mathrm{Mlbf} / \text { in } \quad \text { Ans }
$$

