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Equations of motion for discrete
systems
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Introduction

In this chapter we will discuss several different approaches for obtaining the equations of motion
(EOM’s) of systems for which the mass, damping and stiffness components appear in discrete
components. These EOM’s will be ordinary differential equations which describe the motion of the
system. For the most part, we will be interested in describing small-amplitude motion. Because
of this, we will be able to deal with a linearized form of these differential equations, where the
linearization is performed about equilibrium states.

We will be considering a number of approaches in deriving the EOM’s:

• Newton-Euler formulation – This is a vector-based approach beginning with forces and ac-
celerations written in vector form. In doing so, we will need to deal with all of the forces
acting on the system. In particular, we will include forces of reaction and forces of constraint
along with the applied forces. It is often the case that we will not care about quantifying
the reaction and constraint forces, and consequently, we will eliminate these forces from the
EOM’s before attempting to solve the EOM’s. This elimination can be a tedious task.

• Power equation – The power equation, as we will see, is based on a work/energy (scalar)
description of the motion. An important consequence of this is that many of the forces of
reaction and constraint will naturally not appear in the energy equation. However, since we
will start with a single work/energy equation for the system of interest, we will obtain only
a single EOM regardless of the number of coordinates needed to completely describe the mo-
tion. Hence, the power equation will be useful to us only for systems having a single degree
of freedom (DOF), that is, systems for which only one coordinate is needed to describe the
motion.

• Lagrange’s equations – The Lagrangian formulation is a means by which we will be able to
separate out from the power equation the correct number of EOM’s needed to describe the
motion of the system. That is, for a system having N DOFs, the Lagrangian formulation will
produce N EOM’s.

• Linearized equations of motion – For small amplitude oscillations about an equilibrium state,
we will be able to replace nonlinear terms appearing in the EOM’s obtained from the La-
grangian approach by their linearized approximations. This will produce a set of linear
ordinary differential equations that we will use later on for determining the response of the
system. We will be able to obtain these linear EOM’s directly from the kinetic energy, poten-
tial energy and Rayleigh dissipation functions without directly using Lagrange’s equations.
This formulation will allow us to observe symmetry properties of the mass and stiffness ma-
trices. These symmetry properties will prove useful to use later on in the course in when we
use orthogonality properties of the modal vectors of the problem.

• Flexibility matrix and influence coefficients – Later on in the course we will need to use the in-
verse of the stiffness matrix (called the flexibility matrix) for some of the numerical eigenvalue
extraction methods. Here we will discuss a direct approach for finding the flexibility matrix
using the so-called ’influence coefficients. These influence coefficients are generally easier to
find than the inverse of the stiffness and will provide some physical insight into the problem.
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I.1 EOM’s: Newton-Euler equations

Background

 
Equations of Motion Using the Newton-Euler Equations 

 

 I.2 ME 563 – Fall 2002  Chapter I Notes 

 
Background: For a single rigid body executing planar motion, we have the 

following set of Newton-Euler equations: 
 

  

 

F!  =  ma G  
 

  

 

M A!  =  IA "  
   
 

 
 
 
  where 
 
  G  =  center of mass of body 
  A  =  EITHER center of mass OR fixed point of the rigid body 
    

 

F!   =  resultant force vector acting on rigid body 

    

 

M A! =  resultant moment vector acting about point A 
  IA   =  mass moment of inertia about point A 

    

 

a G =  acceleration vector of the center of mass G 

  

 

!  =  angular acceleration vector of the rigid body 
 
 

Remarks: 
a) ALWAYS draw appropriate free body diagrams (FBD’s) before you attempt 

to develop the EOM’s for the system. 
b) Carefully consider the coordinates used (such as positive direction, whether 

measured from fixed reference or moving reference, whether measured 
from equilibrium or unstretched positions) before drawing FBD’s. 

c) You need to include ALL forces acting on the body when writing down the 
EOM’s (including forces of reaction). Later on when we use the power 
equation and Lagrange’s equations we will be able to ignore forces that do 
no virtual work when deriving EOM’s. 

d) You should have exactly N EOM’s for a system having N degrees of 
freedom (we will discuss the concept of number of degrees of freedom in a 
later lecture). Typically you will have more than N EOM’s; however, you 
will be able to eliminate forces of constraint (reaction forces) and enforce 
kinematic constraints to reduce this number of EOM’s to N. 

e) Never attempt to write down the EOM’s by inspection. 

A 

G 

For a single rigid body executing planar motion, we have the following set of Newton-Euler equa-
tions:

∑
F⃗ = ma⃗G

∑
M⃗A = IAα⃗

where

G = center of mass of the body

A = EITHER the center of mass OR a fixed point on the rigid body
∑

F⃗ = the resultant force acting on the body
∑

M⃗A = the resultant moment about point A acting on the body

IA = the mass moment of inertia of the body about point A

a⃗G = the acceleration vector for the center of mass G

α⃗ = the angular acceleration vector for the body

Remarks:

• ALWAYS draw appropriate free body diagrams (FBD’s) before you attempt to develop the
EOM’s for the system.

• Carefully consider the coordinates used (such as sign conventions, whether measured from
fixed reference or moving reference, whether measured from equilibrium or unstretched posi-
tions) before drawing FBD’s.

• You need to include ALL of the forces acting on the body when writing down the EOM’s
(including forces of reaction). Later on when we use the power equation and Lagrange’s
equations we will be able to ignore forces that do no virtual work when deriving EOM’s.
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• In the end, you should have exactly N EOM’s for a system having N degrees of freedom (we
will discuss the concept of number of degrees of freedom in a later lecture). Typically you
will have more than N Newton/Euler equations at the start; however, you will be able to
eliminate forces of constraint (reaction forces) and enforce kinematic constraints to reduce
this number of EOM’s to N .

• Never attempt to write down the EOM’s by inspection.
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Example I.1.1

A homogeneous cylinder having a mass of M and radius r rolls without slipping on an inclined
surface. A spring having a stiffness of k is attached between the center G of the cylinder and ground.

• Determine the equation of motion (EOM) corresponding to the coordinate x, where x de-
scribes the position on the incline for point G with x being measured from the position
of G when the spring is unstretched.

• Determine the EOM corresponding to the coordinate z, where z describes the position on
the incline for point G with z being measured from the equilibrium position of G.

 x
 z

 no slip
 no slip

θθ

 unstretched position

 equilibrium position

 m
 m

 r  r

figure&a)& figure&b)&

 k  k

 G
 G
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Example I.1.2

Two particles, 1 and 2, (each of mass m) are interconnected by a set of three springs (each of stiff-
ness k) and three dashpots (each having a damping constant of c) and slide on a smooth horizontal
surface. A force f acts on particle 2.

Find the equations of motion (EOM’s) for this problem corresponding to three different sets of
coordinates:

• Using x1 and x2 with both x1 and x2 being measured positive to the right from fixed reference
points with the springs being unstretched when x1 = x2 = 0.

• Using y1 and y2 with y1 being measured positive to the right from a fixed reference point, y2
being measured positive to the left from a fixed reference point and with the springs being
unstretched when y1 = y2 = 0.

• Using z1 and z2 with z1 being measured positive to the right from a fixed reference point,
z2 representing the stretch/compression of the middle spring (z2 > 0 when the spring is
stretched) and with the springs being unstretched when z1 = z2 = 0.

figure&a)& figure&b)&

  x1

 f
 1  2

  x2

figure&a)&

  y1

 f
 1  2

  y2

figure&b)&

  z1

 f
 1  2

  z2

figure&c)&
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Example I.1.3

Particle A (having a mass of m) slides on a smooth horizontal surface with a thin homogeneous bar
(having a length of L and mass M) being attached to A with a smooth pin, as shown. A spring and
dashpot connect A to ground. The coordinate x describes the motion of A (x is measured positive
to the right and x = 0 when the spring is unstretched). The coordinate θ describes the orientation
of the bar, with θ being positive for a counterclockwise rotation from the vertical.

Find the EOM’s of the system using the coordinates of x and θ.

 x

 k

 c

 G

 A

θ
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I.2 EOM’s: Power equation

Objectives

It is desired to be able to obtain the differential equation of motion for a single degree-of-freedom
system without having to account for “workless” forces acting on the system.

Background

The work-energy equation for a system of n rigid bodies is given by:

T + U = T0 + U0 +W (nc)

where

Tj = kinetic energy of the jth body =
1

2
mvAj

2 +
1

2
IAjω

2

T = kinetic energy of the system =
n∑

i=j

Tj

U = potential energy due to conservative forces

W (nc) = work done by nonconservative forces =
∑

j

∫ 2

1
F⃗ (j) · dρ⃗j

Aj = EITHER a fixed point OR the center of mass of the jth body

vAj = speed of point Aj

ω = angular speed of the body

T0, U0 = initial values for the kinetic and potential energies, respectively

 Aj

 j

  
�
ρj

  O (fixed point)

 path of point j

   d
�
ρj (tangent to path)
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Results

The “power equation” results from taking a time derivative of the work-energy equation:

Power =
dW (nc)

dt
=

dT

dt
+

dU

dt

Remarks

• As we will see in the following examples, the power equation will produce a second-order dif-
ferential EOM for a system for which only a single coordinate is needed to describe its motion
(i.e., systems having a single degree of freedom). The power equation has the advantage over
the Newton-Euler approach in that one can ignore forces that do no nonconservative work on
the system.

• A particle is a rigid body for which either the dimensions are small (IG ≈ 0) or is under pure
translation (ω = 0). Therefore, the kinetic energy for a particle is given by T = 1

2mvG2.

• Note that the initial values for the kinetic and potential energies (T0 and U0, respectively)
drop out when differentiating the work-energy with respect to time.
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Example I.2.1

A homogeneous thin bar of mass M and length L is pinned to ground at point O. Using the power
equation, find the equation of motion (EOM) for the bar corresponding to the coordinate of θ where
θ is measured counterclockwise from the vertical.

 G

θ

 g
 O
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Example I.2.2

Use the power equation to find the EOM for the system shown corresponding to the coordinate x,
where the coordinate x is defined such that x = 0 when the spring is unstretched.

 x

 m k

 c
  f (t)
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Example I.2.3

Use the power equation to find the EOM of the system shown corresponding to the coordinate φ.
The mass of the particle is M , and the mass of the homogeneous cylinder (outer radius r) is m.
The bar connecting the particle and the center of the cylinder has a mass that is negligible. The
spring is unstretched when φ = 0.

 k

φ

  f (t)

 no slip  smooth r
 M

 m  negligible mass O

 C
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I.3 EOM’s: Generalized coordinates, generalized forces and gen-
eralized mass coefficients

Objectives

Here we will rewrite the power equation from the last section in a way that the set of chosen
coordinates and their time derivatives are explicitly apparent. In this form, sets of “generalized
forces” and ”generalized mass coefficients” are introduced. The results of this section will lead us
directly in the Lagrangian formulation of the EOM’s found in the next section.

Background

 Ak

  
�rk

  O (fixed point)

 θk

• For a system of n planar rigid bodies, let Ak be either the center of mass or a fixed point on
the kth body. Assume that the position vectors, r⃗k, and angular rotations, θk, are written
in terms of a set of N generalized coordinates qi (i = 1, 2, ..., N). It is assumed that these
generalized coordinates completely describe the configuration of the system for all time. It is
also assumed that r⃗k and θk are not explicit functions of time. From this, we can write for
k = 1, 2, ..., n:

r⃗k = r⃗k (q1, q2, ..., qN )

θk = θk (q1, q2, ..., qN )

• For a function b = b (q1, q2, ..., qN ), we have the chain rule of differentials:

db =
∂b

∂q1
dq1 +

∂b

∂q2
dq2 + ...+

∂b

∂qN
dqN =

N∑

i=1

∂b

∂qi
dqi

• For a function b = b (q1, q2, ..., qN ), we have the chain rule of differentiation:

db

dt
= ḃ =

∂b

∂q1
q̇1 +

∂b

∂q2
q̇2 + ...+

∂b

∂qN
q̇N =

N∑

i=1

∂b

∂qi
q̇i
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Results

T =
1

2

N∑

i=1

N∑

k=1

mikq̇iq̇k

dT =
N∑

i=1

[
d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi

]
dqi

dU =
N∑

i=1

∂U

∂qi
dqi

dW (nc) =
N∑

i=1

Qidqi

where Qi = “generalized force” corresponding the generalized coordinate qi and mik = “generalized
mass coefficient”, each corresponding to the generalized coordinates qi and qk and given by:

Qi =
M∑

j=1

F⃗j ·
∂ρ⃗j
∂qi

mik =
n∑

j=1

[
mj

∂r⃗j
∂qi

· ∂r⃗j
∂qk

+ Ij
∂θj
∂qi

· ∂θj
∂qk

]

where M is the number of applied forces on the system.
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Derivation

Recall the following set of Newton-Euler equations for planar motion of a rigid body:

F⃗j = mj a⃗Gj = mj
¨⃗rj

Mj = Ijαj = Ij θ̈j

where

F⃗j = the resultant force acting on the jth body

Mj = the resultant moment about point Aj acting on the jth body

Gj = center of mass of the jth body

Aj = EITHER the center of mass OR a fixed point on the jth rigid body

Say we take the dot product of the first equation with r⃗j , multiply the second equation by dθj , sum
those results over all n bodies and add the results, producing:

n∑

j=1

[
mj

¨⃗rj · dr⃗j + Ij θ̈jdθj
]
=

n∑

j=1

[
F⃗j · dr⃗j +Mjdθj

]

We recognize the right hand side of the above equation as being the total differential work done
on the system. Alternately, we can write this right hand side of the equation as the difference
between the differential work done by nonconservative forces and the differential of the potential
of conservative forces:

n∑

j=1

[
F⃗j · dr⃗j +Mjdθj

]
= dW (nc) − dU

Therefore, the left hand side of this equation, according to the work-energy equation,

dT + dU = dW (nc)

must be the differential kinetic energy for the system:

dT =
n∑

j=1

[
mj

¨⃗rj · dr⃗j + Ij θ̈jdθj
]

In this section of the notes, we will work to simplify the expressions for the three terms of dT , dU
and dW (nc). Consider the following steps:

• From the chain rule of differentials:

dr⃗j =
N∑

i=1

∂r⃗j
∂qi

dqi

dθj =
N∑

i=1

∂θj
∂qi

dqi
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Substituting these expressions into the expression for dT gives:

dT =
n∑

j=1

[
mj

¨⃗rj ·
(

N∑

i=1

∂r⃗j
∂qi

dqi

)
+ Ij θ̈j

(
N∑

i=1

∂θj
∂qi

dqi

)]

=
N∑

i=1

⎡

⎣
n∑

j=1

(
mj

¨⃗rj ·
∂r⃗j
∂qi

+ Ij θ̈j
∂θj
∂qi

)⎤

⎦ dqi

Note that through the product rule of differentiation:

¨⃗rj ·
∂r⃗j
∂qi

=
d

dt

(
˙⃗rj ·

∂r⃗j
∂qi

)
− ˙⃗rj ·

d

dt

(
∂r⃗j
∂qi

)

=
d

dt

(
˙⃗rj ·

∂r⃗j
∂qi

)
− ˙⃗rj ·

∂ ˙⃗rj
∂qi

It can be shown that (see Appendix I):

∂r⃗j
∂qi

=
∂ ˙⃗rj
∂q̇i

Substituting into the above gives:

¨⃗rj ·
∂r⃗j
∂qi

=
d

dt

(
˙⃗rj ·

∂ ˙⃗rj
∂q̇i

)
− ˙⃗rj ·

∂ ˙⃗rj
∂qi

=
1

2

d

dt

[
∂

∂q̇i

(
˙⃗rj · ˙⃗rj

)]
− 1

2

∂

∂qi

(
˙⃗rj · ˙⃗rj

)

In a similar way, it can be shown that:

θ̈j
∂θj
∂qi

=
1

2

d

dt

[
∂θ̇2j
∂q̇i

]
− 1

2

∂θ̇2j
∂qi

Substituting these two results into the above equation for dT gives:

dT =
N∑

i=1

d

dt

⎡

⎣ ∂

∂q̇i

n∑

j=1

(
1

2
mj

˙⃗rj · ˙⃗rj +
1

2
Ij θ̇

2
j

)⎤

⎦ dqi −
N∑

i=1

⎡

⎣ ∂

∂qi

n∑

j=1

(
1

2
mj

˙⃗rj · ˙⃗rj +
1

2
Ij θ̇

2
j

)⎤

⎦ dqi

=
N∑

i=1

[
d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi

]
dqi

where:

T =
n∑

j=1

(
1

2
mj

˙⃗rj · ˙⃗rj +
1

2
Ij θ̇j

2
)
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• Using the chain rule of differentiation:

T =
1

2

n∑

j=1

mj
˙⃗rj · ˙⃗rj +

1

2

n∑

j=1

Ij θ̇j
2

=
1

2

n∑

j=1

mj

(
N∑

i=1

∂r⃗j
∂qi

q̇i

)
·
(

N∑

k=1

∂r⃗j
∂qk

q̇k

)
+

1

2

n∑

j=1

Ij

(
N∑

i=1

∂θj
∂qi

q̇i

)(
N∑

k=1

∂θj
∂qk

q̇k

)

=
1

2

N∑

i=1

N∑

k=1

⎛

⎝
n∑

j=1

mj
∂r⃗j
∂qi

· ∂r⃗j
∂qk

⎞

⎠ q̇iq̇k +
1

2

N∑

i=1

N∑

k=1

⎛

⎝
n∑

j=1

Ij
∂θj
∂qi

∂θj
∂qk

⎞

⎠ q̇iq̇k

=
1

2

N∑

i=1

N∑

k=1

mikq̇iq̇k

where

mik =
n∑

j=1

[
mj

∂r⃗j
∂qi

· ∂r⃗j
∂qk

+ Ij
∂θj
∂qi

∂θj
∂qk

]

are the “generalized mass coefficients”. Two things to note from the above. First, the kinetic
energy expression T is a function of both the N generalized coordinates qj (through the mik

coefficients) and their time derivatives q̇j . Secondly, the coefficients mik are “symmetric”;
that is, mik = mki.

• The potential energy is a function of only the spatial configuration of the system. Therefore,
U can be expressed completely in terms of the generalized coordinates qi and will not involve
their time derivatives q̇i: U = U (q1, q2, ..., qN ). Using the chain rule of differentials, we can
therefore write:

dU =
N∑

i=1

∂U

∂qi
dqi

• Suppose that we have M nonconservative forces F⃗j (j = 1, 2, ...,M) acting at the following
M locations within the system: ρ⃗j = ρ⃗j (q1, q2, ..., qN ). Using the chain rule of differentials
gives us:

dρ⃗j =
N∑

i=1

∂ρ⃗j
∂qi

dqi
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Using this in the differential work term produces:

dW (nc) =
M∑

j=1

F⃗j · dρ⃗j

=
M∑

j=1

F⃗j ·
(

N∑

i=1

∂ρ⃗j
∂qi

dqi

)

=
N∑

i=1

⎛

⎝
M∑

j=1

F⃗j ·
∂ρ⃗j
∂qi

⎞

⎠ dqi

=
N∑

i=1

Qidqi

where

Qi =
M∑

j=1

F⃗j ·
∂ρ⃗j
∂qi

= “generalized force” corresponding to the generalized coordinate qi

• In summary, the differential form of the power equation:

dT + dU = dW (nc)

can be written in the following explicit form:

N∑

i=1

[
d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+
∂U

∂qi
−Qi

]
dqi = 0
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Example I.3.1

Forces f1 , f2 and f3 act on the three-particle system shown. Generalized coordinates x1, x2 and
x3 are used to describe the motion of these particles, where x2 and x3 are relative coordinates.

• Find the generalized forces corresponding to the generalized coordinates x1, x2 and x3 for the
forces f1, f2 and f3 .

• Find the generalized mass coefficients corresponding to the generalized coordinates x1 , x2
and x3 .

  x1

  f2
 1  2

  x2

  f3
 3

 m  m  m

  x3

  f1

 x

 y
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I.4 EOM’s: Lagrange’s equations

Objectives

Our goal here is to develop a systematic method for deriving the equations of motion for a system
having N degrees of freedom. We will start with the explicit form of the power equation derived
in the last section. From the power equation we will obtain a set of N EOM’s for the system.

Background

In the last section of the notes, we saw that the power equation for a system described by N
generalized coordinates qi (i = 1, 2, ..., N) can be written as:

N∑

i=1

[
d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+
∂U

∂qi
−Qi

]
dqi = 0

where T and U are the kinetic and potential energies for the system, and Qi is the generalized force
corresponding to the coordinate qi:

Qi =
M∑

j=1

F⃗j ·
∂ρ⃗j
∂qi
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Derivation and results

It is assumed that the generalized coordinates qi (i = 1, 2, ..., N) used above completely describe the
configuration of the system at all instances in time. However, we have said nothing at this point
as to whether the coordinates chosen are independent. That is, some of the coordinates could be
related by constraints that have not yet been enforced, and as a result, the coordinates are not
independent.

Consider an example of the simple pendulum shown below. The kinetic and potential energies for

!

 L

 x

 y
 m

θ

 P

this system in terms of the (x, y) coordinates for the particle P are given by:

T =
1

2
m
(
ẋ2 + ẏ2

)
=

1

2
m
(
q̇21 + q̇22

)

U = −mgy = −mgq2

where q1 = x and q2 = y. Note that the chosen generalized coordinates are related by the constraint
q21 + q22 = L2, which by differentiating with respect to time produces: q̇21 = q22 q̇

2
2/
(
L2 − q22

)
. Al-

though q1 and q2 completely describe the configuration of the system, they are NOT independent.
If we enforce the above constraint, T and U can be written in terms of q2 alone as:

T =
1

2
m

[
q22

L2 − q22
+ 1

]
q̇22

U = −mgq2

This single degree-of-freedom system is now described in terms of a single coordinate.

An alternate (and better) choice of coordinates would be to describe the system in terms of the
angle θ. From the figure we see that we have the following constraints: x = Lsinθ and y = Lcosθ.
Substituting these constraints into the original T and U gives:

T =
1

2
m
[
L2θ̇2cos2θ + L2θ̇2cos2θ

]
=

1

2
mL2θ̇2 =

1

2
mL2q̇23

U = −mgLcosθ = −mgLcosq3
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where q3 = θ. Again, we have used a single coordinate in describing the motion of a single degree-
of-freedom system.

At this point, let us assume that all of the generalized coordinates are independent: any given
coordinate cannot be expressed in terms of the remaining N -1 coordinates. With this being the
case, N now represents the total number of degrees of freedom in the system. Since the coordinates
are independent, the general form of our power equation:

N∑

i=1

[
d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+
∂U

∂qi
−Qi

]
dqi = 0

becomes N independent EOM’s of the form:

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+
∂U

∂qi
= Qi

for i = 1, 2, ..., N . The above are known as the set of Lagrange’s equations for an N degree-of-
freedom system.

Recall that the potential energy term U includes the work done by conservative forces (such as
gravitational and spring forces). The generalized force terms Qi includes the work done by all other
forces. The contribution of damping terms naturally appears within the generalized force terms.
It is possible to make the contribution of damping forces more explicit in Lagrange’s equations
through a so-called Rayleigh dissipation function R. The Rayleigh dissipation function for a single
linear dashpot can be written as:

Rj =
1

2
cj∆̇

2
j

where cj is the damping coefficient and ∆̇j is the relative speed across the two ends of the dashpot.
If the system has r dashpots, then the total Rayleigh dissipation function is:

R =
r∑

j=1

Rj =
1

2

r∑

j=1

cj∆̇
2
j

Including damping produces the following modified form of Lagrange’s equations:

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+
∂R

∂q̇i
+
∂U

∂qi
= Qi

for i = 1, 2, ..., N . Here, the generalized forces Qj include all nonconservative forces except those
from the damping terms included in R.
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Steps in using Lagrange’s equations

1. Number of degrees of freedom (DOFs) Determine the number of degrees of freedom
(DOF’s) in the problem. To do so, carefully consider the least number of generalized coor-
dinates N that are needed to completely describe the configuration of the system at any time.

2. Generalized coordinates. Choose your set of generalized coordinates qj(t) for j = 1, 2, ..., N .
Be sure that you have chosen an independent set of coordinates. (Ask the question: Can you
change each coordinate individually while holding the other coordinates fixed and not violate
any motion constraints on the system?) If your coordinates are not independent, there are
constraints that must exist among your coordinates. Enforce the constraints at this point
before proceeding. Also, reconsider your decision on the number of DOF’s in 1. above before
continuing: What is the correct number of DOFs?

3. Free body diagrams. Draw free body diagrams (FBD’s) for all bodies in your system.
These FBD’s will be necessary later on when you derive the generalized forces acting on the
system.

4. Kinetic energy expression, T.
• Write down the velocity vector corresponding to point Aj (either center of mass or fixed

point) for each body (j = 1, 2, ..., n):

v⃗j =
dr⃗j
dt

If Aj is a fixed point, then, of course, v⃗j = 0.
• Write down the angular velocity corresponding to each body (j = 1, 2, ..., n):

ωj =
dθj
dt

• Form the kinetic energy expression for each body:

Tj =
1

2
mj v⃗j · v⃗j +

1

2
Ijω

2
j

(Note that the first term in the above expression is a dot product of the velocity vector
with itself. Take care to write down the vector expression for velocity before writing
down the kinetic energy expression. Also, Ij is the mass moment of inertia of the jth
body for point the choice of point Aj . If the body is to be treated as a particle, then
Ij = 0.)

• Form the total kinetic energy for the system by summing up the kinetic energy expres-
sions for the n rigid bodies:

T =
n∑

j=1

Tj
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• Expand the expression for T to explicitly show the appearance of the q̇j terms:

T =
1

2

N∑

i=1

N∑

k=1

mikq̇iq̇k

From this, identify the mass matrix elements mik. This step will help to simplify the
differentiation process later on.

5. Potential energy expression, U.
• Write down the potential energy for each spring in the system:

(Usp)j =
1

2
kj∆

2
j

• Write down the gravitational potential energy for each body in the system:

(Ugr)j = mjghj

where hj is the elevation of the center of mass of the body above the datum line that
you have chosen. Please note that if hj > 0, the center of mass is above the datum line,
whereas hj < 0 corresponds to the center of mass below the datum line.

• Form the total potential energy for the system:

U =
∑

(Usp)j +
n∑

j=1

(Ugr)j

6. Rayleigh dissipation expression, R.
• Write down the Rayleigh dissipation for each dashpot in the system:

Rj =
1

2
cj∆̇j

2

Form the total Rayleigh dissipation function for the system:

R =
r∑

j=1

Rj

7. Generalized forces, Qi.
• Reconsider your FBD’s of the system. Determine which forces that do virtual work on

the system. A reminder of some forces that you will NOT include:
– Forces due to springs, gravitation attraction and dashpots (since you have already

included these in U and R).
– Contact forces at smooth interfaces. These will do no work on the system.
– Frictional forces required for rolling without slipping. These do no work on the

system.
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– Constraint forces due to rigid connections between bodies. These do work on the
individual bodies but NOT on the entire system.

• Write down position vectors for the point of application of forces that do virtual work
on the system:

ρ⃗j = ρ⃗j(q1, q2, ..., qN )

• Find the differential change in the position vectors for the point of application of the
forces:

dρ⃗j =
N∑

i=1

∂ρ⃗j
∂qi

dqi

• Find the differential work for each force:

dWj = F⃗j · dρ⃗j = F⃗j ·
N∑

i=1

∂ρ⃗j
∂qi

dqi

• Find the differential work for entire system, expand and identify the generalized forces
Qi (i = 1, 2, , N) as the coefficients of the individual dqi terms in the following expression
for dW :

dW =
M∑

j=1

Wj =
N∑

i=1

Qidqi

8. Equations of motion.
• Form the partial derivatives of T with respect to qi and q̇i (i = 1, 2, , N) . Recall that in
forming the partial derivatives with respect to variables qi and q̇i, only the EXPLICIT
appearance of the variables are affected by the partial differentiation.

• Form the total time derivative for the terms:

d

dt

(
∂T

∂q̇i

)

Here, when finding the total time derivative, both EXPLICIT and IMPLICIT (through
the qi and q̇i terms) appearance of time t is affected by the differentiation.

• Form the partial derivatives of U and R with respect to qi and q̇i, respectively
• Combine results to form the N Lagrange’s equations for the system (i = 1, 2, ..., N):

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+
∂R

∂q̇i
+
∂U

∂qi
= Qi

where N is the number of DOF’s in the system.
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Concluding remarks on Lagrange’s equations: some advanced ideas

Recall that we made two important assumptions in deriving the preceding form of Lagrange’s equa-
tions: i) the position vectors and rotation angles are not explicit functions of time (“scleronomic”
systems), and ii) we have chosen an independent set of coordinates. The following discusses the
consequences of these assumptions and what needs to be done when the assumptions are not valid
for a particular system of interest.

Rheonomic systems. “Rheonomic” systems are those for which the position vectors and rotation
angles are explicit functions of time: r⃗j = r⃗j (q1, q2, ..., qN , t) and θj = θj (q1, q2, ..., qN , t). With the
explicit time dependence, the chain rule of differentials gives us:

dr⃗j =
N∑

i=1

∂r⃗j
∂qi

dqi +
∂r⃗j
∂t

dt

With this, we see that the differential work for an applied force includes an additional term due to
this explicit time dependence:

dWj = F⃗j · dρ⃗j = F⃗j ·
[

N∑

i=1

∂ρ⃗j
∂qi

dqi +
∂ρ⃗j
∂t

dt

]

For rheonomic systems, Lagrange’s equations are typically developed in terms of “virtual” displace-
ments δr⃗j , where:

δr⃗j =
N∑

i=1

∂r⃗j
∂qi

δqi

Note that virtual displacements are differential displacements where the explicit time dependence
is frozen while applying the chain rule. In fact, for scleronomic systems, virtual and differential
displacements are exactly the same: δr⃗j = dr⃗j .

Using virtual displacements gives us “virtual work”, δWj :

δWj = F⃗j · δρ⃗j = F⃗j ·
[

N∑

i=1

∂ρ⃗j
∂qi

δqi

]
=

N∑

i=1

[
F⃗j ·

∂ρ⃗j
∂qi

]
δqi =

N∑

i=1

Qjδqi

and, as a result, the generalized forces Qi are the same as before. Therefore, the Lagrangian formu-
lation developed in this section for scleronomic systems are still applicable for rheonomic systems
provided that we use virtual work (rather than differential work) in finding our generalized forces.

Example of a rheonomic system
One of the most common instances of rheonomic systems are those on which “base excitation” is
applied. Consider the two-DOF system shown below where the base “B” of the system is given a
prescribed motion of y(t) = y0sinωt. The motion of particles 1 and 2 is described by the relative
coordinates x1 and x2. With that, the position vectors for these two particles are given by:

r⃗1 = [y0sinωt+ x1] î = r⃗1 (x1, t)
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r⃗2 = [y0sinωt+ x1 + x2] î = r⃗2 (x1, x2, t)

where we see here that due to the prescribed motion of base B, the position vectors for the two
particles are explicit functions of time.

y(t)

f21

x1

f1 2

x2

B
î

ĵ

Using the chain rule of differentials:

dr⃗1 = [y0ωcosωtdt+ dx1] î

dr⃗2 = [y0ωcosωtdt+ dx1 + dx2] î

and the definition of a virtual displacement:

δr⃗1 = [δx1] î

δr⃗2 = [δx1 + δx2] î

we can write the work and virtual work done by the applied forces:

dU = f⃗1 · dr⃗1 + f⃗2 · dr⃗2 = (y0ωcosωt) (f1 + f2) dt+ (f1 + f2) dx1 + f2dx2

δU = f⃗1 · δr⃗1 + f⃗2 · δr⃗2 = (f1 + f2) δx1 + f2δx2

The difference between the work and virtual work expressions above is that virtual work does
not include the influence of the prescribed displacement of the base within the work expression,
whereas it must be included in the work expression. This is how using virtual displacements in
the Lagrangian formulation simplifies the EOM’s and is the recommended formulation for deriving
EOM’s for rheonomic systems.
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Nonholonomic systems. Consider the following system made up of particles A and B. Particle

 A  B

 knife − edge smooth

 side view

 m  m
 A

 B

θ

 top view

  
�vC

  
�vB

  ĵ
  ̂i

  Ĵ

  Î

  cart, C

A moves within a slot cut into cart C (of mass M), as shown, where C is moving with a prescribed
speed (vC) and direction (X). The slot is perpendicular to the prescribed direction of motion for
C. Particle B is attached to A with a massless, rigid rod of length L. B rides along on the same
horizontal surface as C on a knife-edge support. This support allows for smooth sliding of B along
the direction of the rod but does not allow slip perpendicular to the rod. Rotation about the
contact point of the knife-edge with the ground is possible. Enforcing these constraints on a rigid
body kinematics equation relating the velocities of A and B gives:

v⃗B = v⃗A + ω⃗ × r⃗B/A

vB î = ẊAÎ + ẎAÎ +
(
θ̇k̂
)
×
(
−Lî

)

= ẊAÎ + ẎAÎ − Lθ̇ĵ

From the figure we see that:

Î = cosθî− sinθĵ

Ĵ = sinθî+ cosθĵ

Therefore:

vB î =
(
ẊAcosθ + ẎAsinθ

)
î+
(
−ẊAsinθ + ẎAcosθ − Lθ̇

)
ĵ

Balancing coefficients gives the following two constraints:

vB = ẊAcosθ + ẎAsinθ = vCcosθ + ẎAsinθ

0 = −ẊAsinθ + ẎAcosθ − Lθ̇ = −vCsinθ + ẎAcosθ − Lθ̇

Using the first constraint equation above in the kinetic energy expression for the system gives:

T =
1

2
mv2A +

1

2
mv2B +

1

2
Mv2C

=
1

2
m
(
v2C + Ẏ 2

A

)
+

1

2
m
(
v2Ccos

2θ + Ẏ 2
Asin

2θ
)
+

1

2
Mv2C
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From this we see that the kinetic energy is a function of both coordinates YA and θ. The second
constraint above shows that these coordinates are NOT independent; however, due to the nature
of this constraint, we are not able to enforce it. (Do you see the problem? The constraint is
non-integrable; that is, we cannot relate θ to YA without actually solving the problem first.) The
Lagrangian formulation developed here relies on independent coordinates, and therefore we cannot
use this form of Lagrange’s equations to develop the EOM for this single DOF system.

Systems having non-integrable constraints (such as the example above) are known as “nonholo-
nomic”. Since we cannot enforce these constraints apriori, Lagrange’s equations cannot be applied
to such systems. There are a number of ways to modify Lagrange’s equations to handle nonholo-
nomic systems. We will not pursue that here. You are encouraged to read advanced dynamics
textbooks if you are interested in learning more. Should we encounter such systems in this course,
we will avoid this complication and develop the EOM’s through the Newton-Euler formulation.
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Example I.4.1

Find the EOM for the simple pendulum using θ as the generalized coordinate.

 L

θ

 g
 O

 x

 y

 P
 m

 negligible mass
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Example I.4.2

Particles 1 and 2 (having masses of m and M , respectively) move in a HORIZONTAL plane.
Generalized coordinates x1 and x2 describe the position of the system where x2 is measured relative
to particle 1. Forces f and F act in the x-direction on particles 1 and 2, respectively. The springs
are unstretched when x1 = x2 = 0. Find the EOM’s of the system using generalized coordinates
x1 and x2. Ignore gravity. Consider all of the surfaces to be smooth.

x1

x2

k
θ

m

cK

C

M

Ff

1

2

x

y
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Example I.4.3

Find the EOM’s of system shown below using x, φ and θ as generalized coordinates. The spring
is unstretched when x = φ = 0. All three bodies are to be considered to be homogeneous in their
mass distribution, with each body have a mass of m.

 x

 k

 L

 A

θ

 O

 r

 no slip  smooth

 1  2

φ

 g

 3

 x

 y
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Example I.4.4

If particle 0 is given a prescribed motion of y(t) = y0sinΩt, find the EOM’s for the system. Note
that x1 and x2 are relative coordinates. The springs are unstretched when y = x1 = x2 = 0.

  y(t)

  f2 1

  x1

  f1  2

 m  m

  x2

 k  k  k
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