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Free response of discrete systems
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Introduction
In the last chapter of lecture notes, we saw that small motion corresponding to the free response
of an N -DOF discrete system can be described by the following set of N differential equations:

[M ] !̈x+ [C] !̇x+ [K] !x = !0

where [M ], [C] and [K] are the (N ×N) mass, damping and stiffness matrices, respectively. Since
these are linear, constant-coefficient, homogeneous differential equations, the general form of their
solution can be written as the following time-dependent vector:

!x(t) = !Xeλt

where, at this point !X and λ are unknowns. Substituting this solution form into the homogeneous
differential equations produces the following:

[
λ2 [M ] + λ [C] + [K]

]
!Xeλt = !0

Note that eλt "= 0 for any finite real or complex value of λt. Therefore, the above reduces to the
following set of N algebraic equations:

[
λ2 [M ] + λ [C] + [K]

]
!X = !0

These equations represent an “eigenvalue problem” whose solutions λ and !X are known as the
eigenvalues and eigenvectors for the free vibration problem.

In this chapter of the notes we will study the above eigenvalue problem and how the corresponding
eigenvalues and eigenvectors are used in the construction of the free vibration response of the system.
The properties of the solution of the eigenvalue problem will aid us not only in constructing the
solutions, but also in interpreting the nature of the response.
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II.1 Free response: single-DOF systems

In this section of the notes, we will study the free response of single-DOF systems governed by the
following linear, 2nd order differential equation:

mẍ+ cẋ+ kx = 0

As seen in the Introduction to this chapter, the assumed solution form x(t) = Xeλt produces the
following eigenvalue problem for N = 1:

[
λ2m+ λc+ k

]
X = 0

Note that X = 0 satisfies the above equation. However, X = 0 implies that x(t) = 0. This
corresponds to no motion of the system (a “trivial” solution) and is not of interest to us. For
X != 0, the eigenvalue problem becomes:

λ2m+ λc+ k = 0

Since the above is true for any non-zero value of X, we can arbitrary choose a non-zero value for
X. For convenience, we will choose X = 1.

The above is known as the “characteristic equation” for the system. Since this is a quadratic
equation in λ, it has two solutions (the “eigenvalues”) given by the following:
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where we have introduced the following two parameters:
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The parameter ζ defined above (known as the “damping ratio”) dictates the character of the eigen-
values: i) if 0 ≤ ζ < 1, then the two eigenvalues are COMPLEX and distinct (and in complex
conjugate pairs); ii) if ζ = 1, then the two eigenvalues are REAL and repeated; and, iii) if ζ > 1,
then the two eigenvalues are REAL and distinct.
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If the eigenvalues are distinct (as is true for ζ != 1), then the two solutions x1(t) = eλ1t and
x2(t) = eλ2t are independent. Therefore, for this case, the total free vibration response can be
written as a linear combination of x1(t) and x2(t):

x(t) = ax1(t) + bx2(t)

= aeλ1t + beλ2t

Recall that for ζ = 1, the eigenvalues are repeated, and, as a result, the solutions x1(t) = Xeλ1t

and x2(t) = Xeλ2t are NOT independent. Because of this, we will need to treat this as a special
case, as will be seen later on.

• 0 ≤ ζ < 1 (underdamped response). As discussed above, the eigenvalues appear in
complex conjugate pair:

λ1,2 = −ζωn ± iωn

√
1− ζ2

= −ζωn ± iωd

where i =
√
−1 and ωd = ωn

√
1− ζ2.

Since the eigenvalues are distinct, the total free vibration solution is written as:

x(t) = aeλ1t + beλ2t

= ae(−ζωn−iωd)t + be(−ζωn+iωd)t

= e−ζωnt
[
ae−iωdt + be+iωdt

]

= e−ζωnt [a (cosωdt− isinωdt) + b (cosωdt+ isinωdt)]

= e−ζωnt [(a+ b) cosωdt+ i (−a+ b) sinωdt]

= e−ζωnt [Ccosωdt+ Ssinωdt]

where C = a+ b and S = i (−a+ b).

• ζ > 1 (overdamped response). As discussed above, the eigenvalues are real and distinct:

λ1,2 = −ζωn ± ωn

√
ζ2 − 1

Since the eigenvalues are distinct, the total free vibration solution is written as:

x(t) = aeλ1t + beλ2t

= ae

(
−ζωn−ωn

√
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)
t
+ be

(
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√
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• ζ > 1 (critically response). As discussed above, the eigenvalues are real and repeated.
Since the roots are repeated, the solutions x1(t) = eλ1t and x2(t) = eλ2t are not independent,
and, as a result:

x(t) != aeλ1t + beλ2t

What do we do in this case??
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Enforcing initial conditions (ICs)

The free response for a single-DOF system:

mẍ+ cẋ+ kx = 0

can be written in the general form of:

x(t) = au(t) + bv(t)

where the form of the fundamental solution pairs, u(t) and v(t) are given in the following table as
a function of the damping ratio ζ. Recall the following definitions for parameters appearing in this
table:

ζ =
c

2
√
km

ωn =

√
k

m

ωd = ωn

√
1− ζ2
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Summary 
Underdamped solution of equation (2) is given by: 
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The coefficients a and b are found by enforcing initial conditions of x(0) = x0 and ẋ(0) = ẋ0 on the
solution form:

x(0) = x0 = au(0) + bv(0)

ẋ(0) = ẋ0 = au̇(0) + bv̇(0)

Solving the above algebraic equations for a and b gives:

a =
v̇(0)x0 − v(0)ẋ0

u(0)v̇(0)− v(0)u̇(0)
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b =
−u̇(0)x0 + u(0)ẋ0
u(0)v̇(0)− v(0)u̇(0)
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Consideration of underdamped response: estimation of damping ratio

Recall that the general form of underdamped ζ < 1 response is given by:

x(t) = e−ζωnt [Ccosωdt+ Ssinωdt]

where C and S are determined by the ICs. This solution can alternately be written in terms of an
amplitude X and phase φ as:

x(t) = Xe−ζωntsin (ωdt+ φ)

where X =
√
C2 + S2 and φ = tan−1

(
C
S

)
depend on the ICs through C and S.

From this solution form, we see that the free response is made up of an oscillatory component
(having a frequency of ωd = ωn

√
1− ζ2 and phase shifted by φ) that is amplitude modulated by a

decaying exponential (whose decay rate is related to ζωn). A sketch of the response corresponding
to ζ = 0.1, x(0) = 0 and ẋ(0) > 0 is shown below.
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Here we will explore an method by which we can estimate the damping ratio from an underdamped
response plot. To this end, let x1, x2, x3, ... represent successive local maximum values of x(t)
occurring at times t1, t2, t3, ... (as shown in the figure). These local maxima of x(t) occur when:

ẋ(tj) = Xe−ζωntj [−ζωnsin (ωdtj + φ) + ωdcos (ωdtj + φ)] = 0

From this, we see that:

tan (ωdtj + φ) =
sin (ωdtj + φ)

cos (ωdtj + φ)
=

ωd

ζωn
=

√
1− ζ2

ζ

From this, we see that the local maxima occur at equally-spaced time intervals of:

tj+1 − tj =
2π

ωd
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Therefore,

xj
xj+1

=
Xe−ζωntjsin (ωdtj + φ)

Xe−ζωntj+1sin (ωdtj+1 + φ)

= eζωn(tj+1−tj)

= eζωn(2π/ωd)

= e
ζωn

(
2π/ωn

√
1−ζ2

)

= e2πζ/
√

1−ζ2

Therefore, we have:

ln

(
xj
xj+1

)
=

2πζ√
1− ζ2

or, solving for ζ:

ζ =
ln (xj/xj+1)√

4π2 + ln2 (xj/xj+1)
=

δ/2π√
1 + (δ/2π)2

where δ = ln (xj/xj+1) = “logarithmic decrement” of the response. For small damping (ζ << 1),
the above expression damping ratio in terms of the logarithmic decrement reduces to:

ζ =
δ

2π

A comparison of the exact and approximate representations of damping ratio ζ and logarithmic
decrement δ are shown below. It is seen that the approximate relation is quite accurate for damping
ratios up to around 0.4.
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Example II.1.1

Find the response x(t) of the system shown below for m = 3 kg, c = 9 kg/sec and k = 2500 N/m.
Use initial conditions of: x0 = 0.1m and ẋ0 = 2m/sec.

 x

 k

 c  m
 k

 k



68 Chapter II - Free Response of Discrete Systems

Example II.1.2

A particle of mass m is connected to ground with a linear spring and dashpot, as shown. When x
= 0, the spring is unstretched. The particle is released from rest giving a time history of response
that is shown below (times and values of local maxima of x(t) are summarized in the following
table). If m = 1 kg, find the stiffness of the spring k and the damping constant c of the dashpot.
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Example II.1.3

A particle of mass m is supported by a spring, as shown. When x = 0, the spring is unstretched.
The restoring force in the spring is given by the cubic (nonlinear) expression:

Fs = −kx− βx3

For k = 500 N/m and m = 1 kg, the stretch in the spring is known at static equilibrium is known
to be 10 mm. Find the natural frequency for small oscillations about the equilibrium state.

 x
 k

 m
 g
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II.2 Free response: undamped multi-DOF systems

In this section of the notes, we will study the undamped free response of multi-DOF systems
governed by the following set of linear, 2nd order differential equations:

[M ] !̈x+ [K] !x = !0

As seen in the Introduction to this chapter, the assumed solution form !x(t) = !Xeλt produces the
following eigenvalue problem:

[
λ2 [M ] + [K]

]
!X = !0

Note that !X = !0 satisfies the above equation. However, !X = !0 implies that !x(t) = 0. This
corresponds to no motion of the system (a “trivial” solution) and is not of interest to us. For
!X != 0, the matrix

[
λ2 [M ] + [K]

]
must be singular:

det
[
λ2 [M ] + [K]

]
= 0

Expanding the above determinant produces an Nth-order polynomial in λ2:

bNλ
2N + bN−1λ

2(N−1) + bN−2λ
2(N−2)...+ b1λ

2 + b0 = 0

where the coefficients b0, b1, ..., bN depend on the elements of [M ] and [K]. The above polynomial
is known as the “characteristic equation” for the system. The characteristic equation will have N
roots for λ2, and therefore, 2N roots for λ (known as the “eigenvalues” of the system).

For each root λ2j (j = 1, 2, ..., N) of the characteristic equation, we can solve for the corresponding

vector !X(j) (j = 1, 2, ..., N) using the following equations:

[
λ2j [M ] + [K]

]
!X(j) = !0

This produces N vectors !X(j) (j = 1, 2, ..., N) known as the “eigenvectors” (or, “modal vectors”)
for the system.

IMPORTANT NOTE: For a given eigenvalue, you will find that there is not a unique eigenvector.
To see this, suppose that you have found eigenvector !X(j) from the above equations. Any non-zero
multiple of this eigenvector α !X(j) also satisfies this equation:

[
λ2j [M ] + [K]

] (
α !X(j)

)
= !0

Because of this, we are free to choose any scale factor α that we want. Typically this scale is set
by choosing one of the components of the vector !X(j) to be unity (‘1’), and solve for the remaining
N − 1 components. Later on, we will discuss an alternate way of scaling these eigenvectors.
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Some important properties of the roots of the undamped characteristic equation

Recall that the Lagrangian formulation produces symmetric mass and stiffness matrices: [M ] =
[M ]T and [K] = [K]T .

• If the matrices [M ] and [K] are symmetric, then the roots λ2j (j = 1, 2, ..., N) will all be REAL.

• If the roots λ2j (j = 1, 2, ..., N are all real, then all of the eigenvectors "X(j) (j = 1, 2, ..., N)
will also be real. Furthermore, with symmetric mass and stiffness matrices, the eigenvectors
will form an independent set of vectors; that is, no one vector can be written as a linear
combination of the remaining vectors.

• If the matrices [M ] and [K] are both “positive definite”, then all of the roots λ2j (j = 1, 2, ..., N

will be negative: λ2j = −ω2
j . Therefore, all the roots λj (j = 1, 2, ..., 2N will be purely

imaginary:

λj = ±iωj

where ωj (j = 1, 2, ..., 2N) are real. Recognizing this, we will often write the eigenvalue
problem for undamped systems as:

[
−ω2

j [M ] + [K]
]
"X(j) = "0

In general, the mass and stiffness matrices for the systems of interest to us in the course will
be positive definite. In Appendix II, we see how to verify the positive definiteness of your
mass and stiffness matrices.
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Free response of undamped multi-DOF discrete systems

Since the eigenvectors !X(j) (j = 1, 2, ..., N) form an independent set, the solutions !X(j)e±ωjt

(j = 1, 2, ..., N) are independent. From this, we can say that the total free response is a linear
combination of these solutions:

!x(t) =
N∑

j=1

!X(j)
[
aje

−iωjt + bje
iωjt
]

=
N∑

j=1

!X(j) [aj (cosωjt− isinωjt) + bj (cosωjt+ isinωjt)]

=
N∑

j=1

!X(j) [(aj + bj) cosωjt+ i (−aj + bj) sinωjt]

=
N∑

j=1

!X(j) [cjcosωjt+ sjsinωjt]

where cj = aj + bj and sj = i (−aj + bj).

The coefficients cj and sj (j = 1, 2, ..., N) are found from imposing the initial conditions on the
system:

!x(0) =
N∑

j=1

!X(j)cj

!̇x(0) =
N∑

j=1

!X(j)ωjsj

and solving. This process of solving two sets of N algebraic equations can become a bit tedious
if working by hand. In the following we will consider a special property of the eigenvectors that
allows us to simplify the solution process, as well as allowing for a clearer interpretation of the
results.
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Modal vectors orthogonality properties and an application of these properties

The eigenvalue problem relating the jth natural frequency and jth modal vector for an undamped
system can be written as:

ω2
j [M ] "X(j) = [K] "X(j)

Similarly, for the kth natural frequency and kth modal vector pair, we also have:

ω2
k [M ] "X(k) = [K] "X(k)

Say we premultiply the first equation by "X(k)T , premultiply the second equation by "X(j)T and
subtract the results:

ω2
j
"X(k)T [M ] "X(j) − ω2

k
"X(j)T [M ] "X(k) = "X(k)T [K] "X(j) − "X(j)T [K] "X(k)

[Aside: Consider a N × N matrix [A] and two N -vectors "a and "b. In general, "aT [A]"b #= "bT [A]"a
(i.e., the order of multiplication is not reversible). However, if [A] is SYMMETRIC, then "aT [A]"b =
"bT [A]"a.]

Therefore, the above equation becomes:

ω2
j
"X(j)T [M ] "X(k) − ω2

k
"X(j)T [M ] "X(k) = "X(j)T [K] "X(k) − "X(j)T [K] "X(k)

(
ω2
j − ω2

k

)
"X(j)T [M ] "X(k) = 0

Up to this point, we have not made any assumptions regarding the roots of the characteristic
equation. We know that for positive definite, symmetric mass and stiffness matrices, [M ] and [K],
the roots for the natural frequencies are all real. It is possible, however, that the roots could be
repeated; that is, two or more natural frequencies could be equal. Typically, this is not something
that can be determined prior to solving the characteristic equation.

Let’s assume at this point that none of the natural frequencies are repeated; that is, ωj #= ωk. For
this case, the above equation provides that:

"X(j)T [M ] "X(k) = 0

In words, under the conditions above of non-repeated roots, we see that the modal vectors "X(j)

and "X(k) are “orthogonal through the mass matrix [M ]” for j #= k.

It can also be shown that the modal vectors are also orthogonal through the stiffness matrix
[K]. To show this, repeat the above process, except add together the two results of the vector
premultiplications:

ω2
j
"X(j)T [M ] "X(k) + ω2

k
"X(j)T [M ] "X(k) = "X(j)T [K] "X(k) + "X(j)T [K] "X(k)

(
ω2
j + ω2

k

)
"X(j)T [M ] "X(k) = 2 "X(j)T [K] "X(k)
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Since !X(j)T [M ] !X(k) = 0 for j != k, the above shows that:

!X(j)T [K] !X(k) = 0

Thus, the modal vectors are also orthogonal through the stiffness matrix [K].

Note that the above result was shown to be true for the case of non-repeated roots. What if two or
more natural frequencies are equal - does this change that result? It turns out that even for the case
of repeated roots of the characteristic equation, the modal vectors are still linearly independent,
although not necessarily orthogonal. However, any set of linearly independent vectors can be made
orthogonal through a orthogonalization process (e.g., through a Gram-Schmidt orthogonalization).
This process is beyond the scope of material covered in this course, and therefore, we will not
cover that case here. We will proceed with the understanding that we can always produce a set of
orthogonal modal vectors when the mass and stiffness matrices are symmetrical.
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Modal vectors normalization and an application of normalization

The eigenvalue problem relating the jth natural frequency and jth modal vector for an undamped
system can be written as:

ω2
j [M ] "X(j) = [K] "X(j)

Say we multiply the above by a non-zero scalar αj :

ω2
j [M ]

(
αj
"X(j)

)
= [K]

(
αj
"X(j)

)

This highlights something that we have discussed before: if "X(j) is a modal vector for the problem,
then so is ANY non-zero scalar multiple of "X(j). We have seen this in a number of examples that
have been worked out in lecture - it was not possible to find a unique vector for any modal vectors.
There we generally set the value of one position in the vector to some arbitrary number (such as
‘1’) and then solve for the remaining positions of the vectors.

We are free to scale our modal vectors in any way that we choose. What is the best way? The
answer to this depends on the particular application of interest. Here, we will choose the scalar αj

in such a way that (“mass normalization”):

(
αj
"X(j)

)T
[M ]

(
αj
"X(j)

)
= 1

Solving for αj gives:

αj =
1√

"X(j)T [M ] "X(j)

In summary, to produce a set of mass-normalized eigenvectors:

• Solve for the set of eigenvectors from
[
−ω2

j [M ] + [K]
]
"X(j) = "0 in the usual way by choosing

one position in each eigenvector to be ‘1’.

• Solve for the scaling factor αj = 1/
√
"X(j)T [M ] "X(j) for each eigenvector.

• Multiply each eigenvector by its scaling factor to produce a set of normalized eigenvector:
"̂X(j) = αj

"X(j). Therefore, "̂X(j)T [M ] "̂X(j) = 1, as desired.

Earlier we saw that the free vibration coefficients cj and sj are given by:

cj =
"X(j)T [M ]"x(0)
"X(j)T [M ] "X(j)

sj =
1

ωj

"X(j)T [M ]"̇x(0)
"X(j)T [M ] "X(j)

What are the corresponding relations when we use mass-normalized eigenvectors "̂X(j)?
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For mass-normalized modal vectors !̂X(j), we have, by definition: !̂X(j)T [M ] !̂X(j) = 1. With this,
the above equations for the response coefficients cj and sj for j = 1, 2, ...N above simplify to the
following:

cj = !̂X(j)T [M ]!x(0)

sj =
1

ωj

!̂X(j)T [M ]!̇x(0)
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Summary: free response of undamped discrete systems

For the undamped free vibration EOM’s of an N-DOF system:

[M ] !̈x+ [K] !x = !0

with initial conditions of !x(0) and !̇x(0), the response has been shown to be:

!x(t) =
N∑

j=1

!̂X(j) [cjcosωjt+ sjsinωjt]

where, for a set of mass-normalized modal vectors:

cj = !̂X(j)T [M ]!x(0)

sj =
1

ωj

!̂X(j)T [M ]!̇x(0)

Remarks:
• From above we see that the total free response is a linear combination of the “modal re-

sponses” !̂X(j) [cjcosωjt+ sjsinωjt].

– The modal responses represent “synchronous” motion (i.e., the shape the motion is pre-
served for all time) with the shape of the modal response given by the modal vector
(hence, modal vectors are often called “mode shapes”).

– The frequencies of the modal responses ωj (the “natural frequencies”) are the roots of

the characteristic equation: det
[
−ω2

j [M ] + [K]
]
= 0.

– Note that the size of the response coefficients cj and sj depend on the “shape” of the ICs
as compared to the shape of the modal vectors. For example, if both sets of ICs have
shapes similar to a given modal vector, say the kth mode, then the kth modal response
will dominate the response.

• The modal vectors (regardless of normalization) are orthogonal through the symmetric mass
and stiffness matrices: !X(j)T [M ] !X(k) = 0 and !X(j)T [K] !X(k) = 0 for j "= k.

• The simplified form of the response coefficients cj and sj above result from the orthogonality
of the modal vectors (and, therefore, from the symmetry of [M ] and [K]). The Lagrangian
formulation always produces symmetric mass and stiffness matrices; the Newton-Euler for-
mulation does not. If your Newton-Euler EOM’s do not have symmetric mass and stiffness
matrices, you will need to use the following equations to solve for the response coefficients:

!x(0) =
N∑

j=1

!X(j)cj
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!̇x(0) =
N∑

j=1

!X(j)ωjsj

These are two sets of N coupled algebraic equations whose solution represents considerable
computation effort when solved by hand. In addition, an evaluation of modal response con-
tribution to the total response is more difficult. This points to a strong advantage in using
the Lagrangian formulation to derive your EOM’s!
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Special case: response of systems with rigid body modes

We have just seen that the free response of undamped systems is described by the following:

!x(t) =
N∑

j=1

!̂X(j) [cjcosωjt+ sjsinωjt]

where, for a set of mass-normalized modal vectors:

cj = !̂X(j)T [M ]!x(0)

sj =
1

ωj

!̂X(j)T [M ]!̇x(0)

It can be shown that if the stiffness matrix is singular (det[K] = 0), then at least one natural
frequency of the system is zero. From above, we see that having a zero natural frequency, say
ω1 = 0, produces some complications in calculating the response coefficient s1 since we are dividing
by zero. How do we handle this in our analysis? And, what is the physical interpretation of the
response for a system having a zero natural frequency?

For ω1 = 0:

c1cosω1t = c1

s1sinω1t =
(
!̂X(j)T [M ]!̇x(0)

)
lim
ω1→0

sinω1t

ωj
=
(
!̂X(j)T [M ]!̇x(0)

)
t

Therefore, the response with ω1 = 0 becomes:

!x(t) = (c1 + s1t) !̂X
(1) +

N∑

j=2

!̂X(j) [cjcosωjt+ sjsinωjt]

where s1 = !̂X(1)T [M ]!̇x(0). From this, it is seen that the modal response corresponding to ω1 = 0

is not oscillatory; rather, it correspond to rigid motion of the system. The modal vector !̂X(1) is
known as a rigid body mode.
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Special case: beating response of systems with nearly equal natural frequencies

Often times when two identical systems are joined together by a weak stiffness coupling, a “beat-
ing” response can be observed from the joined system. The beating behavior is characterized by
an amplitude modulation of the response and is a direct consequence of the joined system having
nearly equal natural frequencies corresponding to characteristically different mode shapes.

Suppose we start out a system from rest (!̇x(0) = !0). With these ICs, the response can be written
as:

!x(t) =
N∑

j=1

!X(j)cjcosωjt

Here will separate out the contributions arising from the first two modes from the rest of the
response:

!x(t) = !X(1)c1cosω1t+ !X(2)c2cosω2t+ ...

=
1

2

[
!X(1)c1 − !X(2)c2

]
(cosω1t− cosω2t) +

1

2

[
!X(1)c1 + !X(2)c2

]
(cosω1t+ cosω2t) + ...

Using some trig identities, we see that:

cosω1t+ cosω2t = 2cos

(
ω1 + ω2

2
t

)
cos

(
ω2 − ω1

2
t

)

cosω1t− cosω2t = −2sin

(
ω1 + ω2

2
t

)
sin

(
ω2 − ω1

2
t

)

Now suppose that ω1 ≈ ω2: ω2 = (1 + ε)ω1. The response is now given by:

!x(t) = −1

2

[
!X(1)c1 − !X(2)c2

]
sin (ω1t) sin

(εω1

2
t
)

+
1

2

[
!X(1)c1 + !X(2)c2

]
cos (ω1t) cos

(εω1

2
t
)
+ ...

How does the contribution of the first two modes look? To see this, let zi be the ith component of
the response from the first two modes (the ones with nearly identical natural frequencies):

zi(t) = −1

2

[
X(1)

i c1 −X(2)
i c2

]
sin (ω1t) sin

(εω1

2
t
)

+
1

2

[
X(1)

i c1 +X(2)
i c2

]
cos (ω1t) cos

(εω1

2
t
)

The first term on the right hand side of the above equation is represented by a low-frequency
“amplitude modulation” sin

(
εω1
2 t
)
on the response sin (ω1t). This amplitude-modulated response

is shown in the following figure. As we see from this, this component corresponds to a “beating”
response contribution, with the beat frequency given by εω1

2 and a beat period of 4π
εω1

. See the
following plot.
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The second term represents the same qualitative response of an amplitude-modulated motion with
a beat frequency of εω1

2 .

In summary, when a pair of frequencies are nearly equal, the modal response for this pair of modes
with be a response at the common natural frequency modulated in amplitude by a sinusoid at half
the frequency of the difference between the natural frequencies of this pair.
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Example II.2.1

Two identical particles (each of mass m) are attached to a taut string (having a tension F and of
negligible mass). The particles are allowed to move only in the horizontal plane shown. Assume
that the initial tension F is large enough that the subsequent motion of the system will NOT affect
the string tension. If the system is initially at rest with y1(0) = y0 and y2(0) = 0, find the motion
of the system upon release.
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Example II.2.2

Find the natural frequencies and modal vectors for the two-DOF system shown using the absolute
coordinate x1 and relative coordinate x2.

 1

  x1

 2

 m  m

  x2

 k  k
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Example II.2.3

Find the natural frequencies and modal vectors for the three-DOF system shown using the absolute
coordinates x1, x2 and x3.

  x1

  2m
 k

  2k

 k
 m

 m

  x3

  x2
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Listing of Matlab program for finding natural frequencies and modal vectors: 

 
%matlab program for Example II.6 
 
clear 
%solve via characteristic equation 
c=[-2,10,-11,2]'; omega=sort(sqrt(roots(c))) 
 
%solve using eigenvalue solver 
clear omega 
M=[2,0,0;0,1,0;0,0,1]; %define mass matrix 
K=[4,-1,-2;-1,1,0;-2,0,2]; %define stiffness matrix 
[X,d]=eig(K,M); %solve for modal vectors and evalues 
[omega,id]=sort(sqrt(diag(d))); %sort natural frequencies and modes 
X=X(:,id); 

first mode, X(1) second mode, X(2) 

third mode, X(3) 
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Example II.2.4

Find the natural frequencies and modal vectors for the two-DOF system shown using the absolute
coordinates θ1 and θ2.

  x = 0   x = L / 2  x = L

 shaft of negligible mass  shaft of negligible mass

 I   2I

 GJ  GJ
 θ1  θ2
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 II.2 - 16 ME563 - cmk 

Matlab Code for Finding the Response Coefficients 
 

clear 
 
%mass and stiffness matrices 
M=[1,0;0,2]; 
K=[2,-1;-1,1]; 
 
%initial conditions 
x0=[1;1]; 
v0=[0;0]; 
 
%natural frequencies and modal vectors 
[v,d]=eig(K,M); 
[omega,id]=sort(sqrt(diag(d))); 
v=v(:,id); 
 
%normalize modal vectors 
alpha=sqrt(diag(v'*M*v))'; 
v=v./[ones(2,1)*alpha]; 
 
%find response coefficients 
c=v'*M*x0; 
s=(v'*M*v0)./omega; 
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Example II.2.5

Consider the system shown below. (a) Verify that the system possess at least one rigid body mode;
(b) Find the remaining natural frequencies and all mode shapes; and (c) Find the response to the
initial conditions of !x(0) = !0, ẋ1(0) = 1 and ẋ2(0) = ẋ3(0) = 0.

  x1

  2m  m
 k   3k

 m

  x2   x3
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Example II.2.6

If α << 1, find and describe the motion of the system if it starts from rest with x1(0) = A and
x2(0) = 0.

  x1

 m
 !k  k

 m

  x2

 k
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II.3 Free response: damped multi-DOF systems

In this section of the notes, we will study the undamped free response of multi-DOF systems
governed by the following set of linear, 2nd order differential equations:

[M ] !̈x+ [C] !̇x+ [K] !x = !0

As seen in the Introduction to this chapter, the assumed solution form !x(t) = !Xeλt produces the
following eigenvalue problem:

[
λ2 [M ] + λ [C] + [K]

]
!X = !0

Note that !X = !0 satisfies the above equation. However, !X = !0 implies that !x(t) = 0. This
corresponds to no motion of the system (a “trivial” solution) and is not of interest to us. For
!X != 0, the matrix

[
λ2 [M ] + λ [C] + [K]

]
must be singular:

det
[
λ2 [M ] + λ [C] + [K]

]
= 0

Expanding the above determinant produces an 2Nth-order polynomial in λ:

b2Nλ
2N + b2N−1λ

2N−1 + b2N−2λ
2N−2...+ b1λ+ b0 = 0

where the coefficients b0, b1, ..., b2N depend on the elements of [M ], [C] and [K]. The above poly-
nomial is known as the “characteristic equation” for the system. The characteristic equation will
have 2N roots for λ (known as the “eigenvalues” of the system).

For each root λj (j = 1, 2, ..., 2N) of the characteristic equation, we can solve for the corresponding

vector !X(j) (j = 1, 2, ..., 2N) using the following equations:

[
λ2j [M ] + λj [C] + [K]

]
!X(j) = !0

This produces 2N vectors !X(j) (j = 1, 2, ..., 2N) known as the “eigenvectors” for the system.
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Discussion: comparison of the undamped and damped eigenvalue problems

Recall from before the following observations of the UNDAMPED eigenvalue problem:

• The characteristic polynomial contains only even powers of λ (that is, the characteristic poly-
nomial for the undamped case is Nth order in λ2).

• The roots for λ2 are real and negative. Consequently, the roots for λ are purely imaginary:
λj = ±iωj .

• The moduli of the purely imaginary roots for λ are the natural frequencies of the system.

• Since the roots for λ2 are real, the eigenvectors vectors #X are real.

Here, for the DAMPED eigenvalue problem:

• The characteristic polynomial contains both even and odd powers of λ. In general, we should
expect the roots λj to be complex (containing both real and imaginary parts):

λj = νj + iωj

• When complex roots λj exist, they will appear in complex conjugate pairs. That is, if
λj = νj + iωj is a root of the characteristic equation, then λj = νj − iωj will also be a
root.

• The real parts of the roots for λj are expected to be non-positive; that is, νj ≤ 0 .

• When the roots for λj are complex, the eigenvectors #X(j) are will be complex. We will write
the complex eigenvectors as:

#X(j) = #u(j) + i#v(j)

• As with the roots of the characteristic equation, complex eigenvectors will appear in complex
conjugate pairs. That is, if #X(j) = #u(j) + i#v(j) is an eigenvector, then #X(j) = #u(j) − i#v(j) is
also an eigenvector.
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Free response of damped multi-DOF discrete systems

Let’s assume that all roots of the characteristic equation are complex, and therefore, as discussed
above, appear in complex conjugate pairs (j = 1, 2, ..., N):

λj = νj ± iωj

As a result, the eigenvectors are also assumed to be complex, and appearing in complex conjugate
pairs (j = 1, 2, ..., N):

$X(j) = $u(j) ± i$v(j)

If the eigenvectors $X(j) (j = 1, 2, ..., N) form an independent set, the solutions $X(j)eλjt (j =
1, 2, ..., 2N) are independent. From this, we can say that the total free response is a linear combi-
nation of these solutions:

$x(t) =
N∑

j=1

[
aje

(νj+iωj)t
(
$u(j) + i$v(j)

)
+ bje

(νj−iωj)t
(
$u(j) − i$v(j)

)]

=
N∑

j=1

eνjt
[
aje

iωjt
(
$u(j) + i$v(j)

)
+ bje

−iωjt
(
$u(j) − i$v(j)

)]

=
N∑

j=1

eνjt
[
aj (cosωjt+ sinωjt)

(
$u(j) + i$v(j)

)
+ bj (cosωjt− sinωjt)

(
$u(j) − i$v(j)

)]

=
N∑

j=1

eνjt
[
(aj + bj)

(
$u(j)cosωjt− $v(j)sinωjt

)
+ i (aj − bj)

(
$u(j)sinωjt+ $v(j)cosωjt

)]

=
N∑

j=1

eνjt
[
cj
(
$u(j)cosωjt− $v(j)sinωjt

)
+ sj

(
$u(j)sinωjt+ $v(j)cosωjt

)]

=
N∑

j=1

eνjt
[(

cj$u
(j) + sj$v

(j)
)
cosωjt+

(
−cj$v

(j) + sj$u
(j)
)
sinωjt

]

where cj = aj + bj and sj = i (aj − bj).
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Summary: free response of damped multi-DOF discrete systems

We have seen that the free response of a damped multi-DOF system is given by:

!x(t) =
N∑

j=1

eνjt
[(

cj!u
(j) + sj!v

(j)
)
cosωjt+

(
−cj!v

(j) + sj!u
(j)
)
sinωjt

]

• The eigenvalues for damped systems are typically complex, with λj = νj+iωj . As seen above,
the imaginary part ωj is the frequency of the oscillatory portion of the response. The real
part νj governs the rate of decay of the oscillations.

• The real and imaginary parts of the eigenvectors and play a more complicated role in the free
response.

• The response above shows that the total free response is made up of modal contributions
eνjt

[(
cj!u(j) + sj!v(j)

)
cosωjt+

(
−cj!v(j) + sj!u(j)

)
sinωjt

]
might look similar to that for un-

damped systems but are quite different.

– Here the modal contributions are decaying harmonics.

– The shape of the modal contributions involves a combination of the real and imaginary
parts of the eigenvectors. Recall that for the undamped problem, the shape of the re-
sponse is simply given by the shape of the corresponding modal vector.

– For undamped response, the modal contributions were synchronous (shape of response
remains constant with time). Here for damped response, the shape of the modal contri-
butions to the response changes with time (this might require some study of these modal
contributions to make this observation). Therefore, the concept of a “mode shape” is
not relevant for damped systems.

– Note that for undamped response, νj = 0 and !v(j) = !0. For this case, the equation above
for the damped response reduces to the undamped response, as expected.

• The undamped and damped responses for multi-DOF systems are summarized in the follow-
ing table.
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Special topic: Proportional damping

Up to this point, we have considered a general form of the damping matrix [C]. Here we will
investigate a special form of the damping matrix that is a linear combination of the symmetric
mass and stiffness matrices of the system:

[C] = α[M ] + β[K]

where α and β are scalar constants. At first glance, this might appear to be a rather artificial de-
scription of damping. However, there are many systems for which this description closely resembles
the actual damping. For example, [C] = α[M ] (mass proportional or external damping) would arise
in a system where dashpots are connected between ground and each particle in the system, with
each damping coefficient being proportional to the particle mass. [C] = β[K] (stiffness proportional
or internal damping) would arise in a system where dashpots exist at all locations where springs
exist, with each damping coefficient being proportional to the corresponding spring stiffness. The
general form shown above [C] = α[M ] + β[K] is known as “proportional” (or, Rayleigh) damping.
Rayleigh damping is also used when the actual damping mechanism is not well known; in that case,
this model can be a reasonable approximation to the actual damping.

With this form of damping, the free response EOM’s become:

[M ] #̈x+ [α[M ] + β[K]]#̇x+ [K] #x = #0

Here we will consider the following coordinate transformation:

#x(t) =
N∑

j=1

#X(j)pj(t)

where #X(j) are the UNDAMPED modal vectors for the problem and pj(t) are a set of to-be deter-
mined “modal response coefficients”.

Substitute the above coordinate transformation into the above Rayleigh-damped EOM’s and pre-
multiply by the transpose of one of the undamped modal vectors #X(k):

N∑

j=1

#X(k)T [M ] #X(j)p̈j +
N∑

j=1

#X(k)T (α [M ] + β[K]) #X(j)pj +
N∑

j=1

#X(k)T [K] #X(j)ṗj = #0

N∑

j=1

#X(k)T [M ] #X(j) (p̈j + αṗj) +
N∑

j=1

#X(k)T [K] #X(j) (βṗj + pj) = #0

Recall that the undamped modal vectors are orthogonal: #X(k)T [M ] #X(j) = #X(k)T [K] #X(j) = 0 for

j != k. Furthermore, for mass-normalized modes, we have: #̂X(j)T [M ] #̂X(j) = 1 and #̂X(j)T [K] #̂X(j) =
ω2
j , where ωj are the undamped natural frequencies. With these observations, the summations in

the above are eliminated and the above reduce to:

p̈j +
(
α+ ω2

jβ
)
ṗj + ω2

j pj = 0
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We see the the Rayleigh-damped modal EOM’s are uncoupled; that is, a single EOM contains
only a single modal coordinate pj(t), and we have N single-DOF EOM’s. Here we will put these
uncoupled EOM’s in the standard form for single-DOF systems:

p̈j + 2ζjωj ṗj + ω2
j pj = 0

where ζj = (α/ωj + βωj) /2 is the damping ratio for the pth modal coordinate.

We now solve these uncoupled EOM’s as we did for the free response of single-DOF systems.
Suppose that all modes are “underdamped”; that is, ζj < 1 for all j = 1, 2, ..., N . For this, the
solutions for the free response modal equations are:

pj(t) = e−ζjωjt (cjcosωdjt+ sjsinωdjt)

where ωdj = ωj

√
1− ζ2j .

Substituting these modal responses back into the original coordinate transformation above gives:

%x(t) =
N∑

j=1

%X(j)pj(t) =
N∑

j=1

%X(j)e−ζjωjt (cjcosωdjt+ sjsinωdjt)

From this, we see that the special Rayleigh-damped systems share the same type of solution form as
the corresponding undamped systems: the modal contributions correspond to synchronous motion.
However, here the modal contributions are exponentially-decaying harmonic responses. Also from
this, we see that each mode has a damping ratio ζj and damped natural frequency ωdj assigned
to it. These parameters are directly related back to the undamped natural frequencies ωj and the
Rayleigh damping parameters α and β.
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Example II.3.1
Find the eigenvalues and eigenvectors for the two-DOF system shown. Compare your results with
those of the undamped system. Find the response corresponding to the system being released from
rest with x1(0) = x2(0) = 1.

Is this system proportionally damped? If not, what modifications can be made to the model to
make it proportionally damped?

  x1

 m

 k
 k

 m

  x2

 k

 c  c
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